Counterfactual Shapley Values for Explaining Reinforcement Learning

Yiwei Shi, Qi Zhang, Kevin McAreavey, Weiru Liu
{"title":"Counterfactual Shapley Values for Explaining Reinforcement Learning","authors":"Yiwei Shi, Qi Zhang, Kevin McAreavey, Weiru Liu","doi":"arxiv-2408.02529","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach Counterfactual Shapley Values (CSV),\nwhich enhances explainability in reinforcement learning (RL) by integrating\ncounterfactual analysis with Shapley Values. The approach aims to quantify and\ncompare the contributions of different state dimensions to various action\nchoices. To more accurately analyze these impacts, we introduce new\ncharacteristic value functions, the ``Counterfactual Difference Characteristic\nValue\" and the ``Average Counterfactual Difference Characteristic Value.\" These\nfunctions help calculate the Shapley values to evaluate the differences in\ncontributions between optimal and non-optimal actions. Experiments across\nseveral RL domains, such as GridWorld, FrozenLake, and Taxi, demonstrate the\neffectiveness of the CSV method. The results show that this method not only\nimproves transparency in complex RL systems but also quantifies the differences\nacross various decisions.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach Counterfactual Shapley Values (CSV), which enhances explainability in reinforcement learning (RL) by integrating counterfactual analysis with Shapley Values. The approach aims to quantify and compare the contributions of different state dimensions to various action choices. To more accurately analyze these impacts, we introduce new characteristic value functions, the ``Counterfactual Difference Characteristic Value" and the ``Average Counterfactual Difference Characteristic Value." These functions help calculate the Shapley values to evaluate the differences in contributions between optimal and non-optimal actions. Experiments across several RL domains, such as GridWorld, FrozenLake, and Taxi, demonstrate the effectiveness of the CSV method. The results show that this method not only improves transparency in complex RL systems but also quantifies the differences across various decisions.
解释强化学习的反事实夏普利值
本文介绍了一种新方法 "反事实夏普利值"(Counterfactual Shapley Values,CSV),它通过将反事实分析与夏普利值相结合,增强了强化学习(RL)中的可解释性。该方法旨在量化和比较不同状态维度对各种行动选择的贡献。为了更准确地分析这些影响,我们引入了新的特征值函数,即 "反事实差异特征值 "和 "平均反事实差异特征值"。这些函数有助于计算沙普利值,以评估最优行动和非最优行动之间的分布差异。在 GridWorld、FrozenLake 和 Taxi 等多个 RL 领域进行的实验证明了 CSV 方法的有效性。结果表明,这种方法不仅能提高复杂 RL 系统的透明度,还能量化各种决策之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信