Differential equations defined by Kreĭn-Feller operators on Riemannian manifolds

Sze-Man Ngai, Lei Ouyang
{"title":"Differential equations defined by Kreĭn-Feller operators on Riemannian manifolds","authors":"Sze-Man Ngai, Lei Ouyang","doi":"arxiv-2408.04858","DOIUrl":null,"url":null,"abstract":"We study linear and semi-linear wave, heat, and Schr\\\"odinger equations\ndefined by Kre\\u{\\i}n-Feller operator $-\\Delta_\\mu$ on a complete Riemannian\n$n$-manifolds $M$, where $\\mu$ is a finite positive Borel measure on a bounded\nopen subset $\\Omega$ of $M$ with support contained in $\\overline{\\Omega}$.\nUnder the assumption that $\\underline{\\operatorname{dim}}_{\\infty}(\\mu)>n-2$,\nwe prove that for a linear or semi-linear equation of each of the above three\ntypes, there exists a unique weak solution. We study the crucial condition\n$\\dim_(\\mu)>n-2$ and provide examples of measures on $\\mathbb{S}^2$ and\n$\\mathbb{T}^2$ that satisfy the condition. We also study weak solutions of\nlinear equations of the above three classes by using examples on $\\mathbb{S}^1$","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study linear and semi-linear wave, heat, and Schr\"odinger equations defined by Kre\u{\i}n-Feller operator $-\Delta_\mu$ on a complete Riemannian $n$-manifolds $M$, where $\mu$ is a finite positive Borel measure on a bounded open subset $\Omega$ of $M$ with support contained in $\overline{\Omega}$. Under the assumption that $\underline{\operatorname{dim}}_{\infty}(\mu)>n-2$, we prove that for a linear or semi-linear equation of each of the above three types, there exists a unique weak solution. We study the crucial condition $\dim_(\mu)>n-2$ and provide examples of measures on $\mathbb{S}^2$ and $\mathbb{T}^2$ that satisfy the condition. We also study weak solutions of linear equations of the above three classes by using examples on $\mathbb{S}^1$
黎曼流形上 Kreĭn-Feller 算子定义的微分方程
我们研究了由完整黎曼n$-manifolds $M$上的Kre\u\{i}n-Feller算子$-\Delta_\mu$定义的线性和半线性波、热和薛定谔方程,其中$\mu$是$M$的有界开放子集$\Omega$上的有限正伯尔量纲,其支持包含在$\overline{\Omega}$中。在$\underline{operatorname{dim}}_{\infty}(\mu)>n-2$的假设下,我们证明对于上述三种类型的线性或半线性方程,都存在唯一的弱解。我们研究了关键条件$\dim_(\mu)>n-2$,并举例说明了满足条件的$\mathbb{S}^2$和$\mathbb{T}^2$上的度量。我们还利用 $\mathbb{S}^1$ 上的例子研究了上述三类线性方程的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信