Poincaré's lemma for formal manifolds

Fulin Chen, Binyong Sun, Chuyun Wang
{"title":"Poincaré's lemma for formal manifolds","authors":"Fulin Chen, Binyong Sun, Chuyun Wang","doi":"arxiv-2408.04263","DOIUrl":null,"url":null,"abstract":"This is a paper in a series that studies smooth relative Lie algebra\nhomologies and cohomologies based on the theory of formal manifolds and formal\nLie groups. In two previous papers, we develop the basic theory of formal\nmanifolds, including generalizations of vector-valued distributions and\ngeneralized functions on smooth manifolds to the setting of formal manifolds.\nIn this paper, we establish Poincar\\'e's lemma for de Rham complexes with\ncoefficients in formal functions, formal generalized functions, compactly\nsupported formal densities, or compactly supported formal distributions.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This is a paper in a series that studies smooth relative Lie algebra homologies and cohomologies based on the theory of formal manifolds and formal Lie groups. In two previous papers, we develop the basic theory of formal manifolds, including generalizations of vector-valued distributions and generalized functions on smooth manifolds to the setting of formal manifolds. In this paper, we establish Poincar\'e's lemma for de Rham complexes with coefficients in formal functions, formal generalized functions, compactly supported formal densities, or compactly supported formal distributions.
形式流形的泊恩卡雷定理
本文是基于形式流形和形式李群理论研究光滑相对李代数同调与同调的系列论文之一。在前两篇论文中,我们发展了形式流形的基本理论,包括将光滑流形上的向量值分布和广义函数推广到形式流形的环境中。在本文中,我们建立了以形式函数、形式广义函数、紧凑支持的形式密度或紧凑支持的形式分布为系数的 de Rham 复数的 Poincar\'e' Lemma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信