Criteria for the existence of Schwartz Gabor frames over rational lattices

Ulrik Enstad, Hannes Thiel, Eduard Vilalta
{"title":"Criteria for the existence of Schwartz Gabor frames over rational lattices","authors":"Ulrik Enstad, Hannes Thiel, Eduard Vilalta","doi":"arxiv-2408.03423","DOIUrl":null,"url":null,"abstract":"We give an explicit criterion for a rational lattice in the time-frequency\nplane to admit a Gabor frame with window in the Schwartz class. The criterion\nis an inequality formulated in terms of the lattice covolume, the dimension of\nthe underlying Euclidean space, and the index of an associated subgroup\nmeasuring the degree of non-integrality of the lattice. For arbitrary lattices\nwe also give an upper bound on the number of windows in the Schwartz class\nneeded for a multi-window Gabor frame.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an explicit criterion for a rational lattice in the time-frequency plane to admit a Gabor frame with window in the Schwartz class. The criterion is an inequality formulated in terms of the lattice covolume, the dimension of the underlying Euclidean space, and the index of an associated subgroup measuring the degree of non-integrality of the lattice. For arbitrary lattices we also give an upper bound on the number of windows in the Schwartz class needed for a multi-window Gabor frame.
有理网格上施瓦茨 Gabor 框架的存在标准
我们给出了一个明确的标准,要求时频平面上的有理晶格能够容纳 Schwartz 类窗口的 Gabor 框架。该判据是一个不等式,它是用网格卷积、底层欧几里得空间的维数以及衡量网格非积分程度的相关子群的指数来表示的。对于任意网格,我们还给出了多窗口 Gabor 框架所需的 Schwartz 类窗口数量的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信