Large Perturbations of Nest Algebras

Kenneth R. Davidson
{"title":"Large Perturbations of Nest Algebras","authors":"Kenneth R. Davidson","doi":"arxiv-2408.03317","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{M}$ and $\\mathcal{N}$ be nests on separable Hilbert space. If\nthe two nest algebras are distance less than 1\n($d(\\mathcal{T}(\\mathcal{M}),\\mathcal{T}(\\mathcal{N})) < 1$), then the nests\nare distance less than 1 ($d(\\mathcal{M},\\mathcal{N})<1$). If the nests are\ndistance less than 1 apart, then the nest algebras are similar, i.e. there is\nan invertible $S$ such that $S\\mathcal{M} = \\mathcal{N}$, so that $S\n\\mathcal{T}(\\mathcal{M})S^{-1} = \\mathcal{T}(\\mathcal{N})$. However there are\nexamples of nests closer than 1 for which the nest algebras are distance 1\napart.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{M}$ and $\mathcal{N}$ be nests on separable Hilbert space. If the two nest algebras are distance less than 1 ($d(\mathcal{T}(\mathcal{M}),\mathcal{T}(\mathcal{N})) < 1$), then the nests are distance less than 1 ($d(\mathcal{M},\mathcal{N})<1$). If the nests are distance less than 1 apart, then the nest algebras are similar, i.e. there is an invertible $S$ such that $S\mathcal{M} = \mathcal{N}$, so that $S \mathcal{T}(\mathcal{M})S^{-1} = \mathcal{T}(\mathcal{N})$. However there are examples of nests closer than 1 for which the nest algebras are distance 1 apart.
巢代数的大扰动
让 $\mathcal{M}$ 和 $\mathcal{N}$ 是可分离的希尔伯特空间上的嵌套。如果两个巢代数的距离小于 1($d(\mathcal{T}(\mathcal{M}),\mathcal{T}(\mathcal{N}))<1$),则嵌套的距离小于 1($d(\mathcal{M},\mathcal{N})<1$)。如果嵌套之间的距离小于 1,那么嵌套代数是相似的,即存在一个可逆的 $S$,使得 $S\mathcal{M} = \mathcal{N}$,从而 $S\mathcal{T}(\mathcal{M})S^{-1} = \mathcal{T}(\mathcal{N})$。然而,也有一些嵌套距离大于 1 的例子,它们的嵌套代数相差 1 个距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信