Piecewise constant profiles minimizing total variation energies of Kobayashi-Warren-Carter type with fidelity

Yoshikazu Giga, Ayato Kubo, Hirotoshi Kuroda, Jun Okamoto, Koya Sakakibara
{"title":"Piecewise constant profiles minimizing total variation energies of Kobayashi-Warren-Carter type with fidelity","authors":"Yoshikazu Giga, Ayato Kubo, Hirotoshi Kuroda, Jun Okamoto, Koya Sakakibara","doi":"arxiv-2408.04228","DOIUrl":null,"url":null,"abstract":"We consider a total variation type energy which measures the jump\ndiscontinuities different from usual total variation energy. Such a type of\nenergy is obtained as a singular limit of the Kobayashi-Warren-Carter energy\nwith minimization with respect to the order parameter. We consider the\nRudin-Osher-Fatemi type energy by replacing relaxation term by this type of\ntotal variation energy. We show that all minimizers are piecewise constant if\nthe data is continuous in one-dimensional setting. Moreover, the number of\njumps is bounded by an explicit constant involving a constant related to the\nfidelity. This is quite different from conventional Rudin-Osher-Fatemi energy\nwhere a minimizer must have no jump if the data has no jumps. The existence of\na minimizer is guaranteed in multi-dimensional setting when the data is\nbounded.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a total variation type energy which measures the jump discontinuities different from usual total variation energy. Such a type of energy is obtained as a singular limit of the Kobayashi-Warren-Carter energy with minimization with respect to the order parameter. We consider the Rudin-Osher-Fatemi type energy by replacing relaxation term by this type of total variation energy. We show that all minimizers are piecewise constant if the data is continuous in one-dimensional setting. Moreover, the number of jumps is bounded by an explicit constant involving a constant related to the fidelity. This is quite different from conventional Rudin-Osher-Fatemi energy where a minimizer must have no jump if the data has no jumps. The existence of a minimizer is guaranteed in multi-dimensional setting when the data is bounded.
逼真地使小林-沃伦-卡特类型的总变化能量最小化的分片常数剖面图
我们考虑的是一种测量跳跃不连续的总变化型能量,它不同于通常的总变化能量。这种类型的能量是小林-沃伦-卡特(Kobayashi-Warren-Carter)能量的奇异极限,与阶次参数有关的最小化。我们考虑用这种总变化能量代替松弛项,得到鲁丁-奥谢-法特米(Rudin-Osher-Fatemi)型能量。我们证明,如果数据在一维环境中是连续的,那么所有最小值都是片断常数。此外,跳跃次数受一个明确的常数约束,这个常数与保真度有关。这与传统的 Rudin-Osher-Fatemi 能量完全不同,在传统能量中,如果数据没有跳跃,最小化子就一定没有跳跃。在数据有界的多维环境中,保证了最小化的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信