Convergence of sub-series' and sub-signed series' in terms of the asymptotic $ψ$-density

Janne Heittokangas, Zinelaabidine Latreuch
{"title":"Convergence of sub-series' and sub-signed series' in terms of the asymptotic $ψ$-density","authors":"Janne Heittokangas, Zinelaabidine Latreuch","doi":"arxiv-2408.03973","DOIUrl":null,"url":null,"abstract":"Given a non-negative real sequence $\\{c_n\\}_n$ such that the series\n$\\sum_{n=1}^{\\infty}c_n$ diverges, it is known that the size of an infinite\nsubset $A\\subset\\mathbb{N}$ can be measured in terms of the linear density such\nthat the sub-series $\\sum_{n\\in A}c_n$ either (a) converges or (b) still\ndiverges. The purpose of this research is to study these convergence/divergence\nquestions by measuring the size of the set $A\\subset\\mathbb{N}$ in a more\nprecise way in terms of the recently introduced asymptotic $\\psi$-density. The\nconvergence of the associated sub-signed series $\\sum_{n=1 }^{\\infty}m_nc_n$ is\nalso discussed, where $\\{m_n\\}_n$ is a real sequence with values restricted to\nthe set $\\{-1, 0, 1\\}$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a non-negative real sequence $\{c_n\}_n$ such that the series $\sum_{n=1}^{\infty}c_n$ diverges, it is known that the size of an infinite subset $A\subset\mathbb{N}$ can be measured in terms of the linear density such that the sub-series $\sum_{n\in A}c_n$ either (a) converges or (b) still diverges. The purpose of this research is to study these convergence/divergence questions by measuring the size of the set $A\subset\mathbb{N}$ in a more precise way in terms of the recently introduced asymptotic $\psi$-density. The convergence of the associated sub-signed series $\sum_{n=1 }^{\infty}m_nc_n$ is also discussed, where $\{m_n\}_n$ is a real sequence with values restricted to the set $\{-1, 0, 1\}$.
用渐近 $ψ$ 密度表示子序列和子有符号序列的收敛性
给定一个非负实数序列$\{c_n\}_n$,使得数列$\sum_{n=1}^{\infty}c_n$发散,已知无穷子集$A\subset\mathbb{N}$的大小可以用线性密度来测量,使得子数列$\sum_{n\in A}c_n$要么(a)收敛,要么(b)仍然发散。本研究的目的是通过最近引入的渐近 $\psi$ 密度,以更精确的方式测量集合 $A\subset\mathbb{N}$ 的大小,来研究这些收敛/发散问题。我们还讨论了相关子符号序列 $\sum_{n=1 }^{\infty}m_nc_n$ 的收敛性,其中 $\{m_n\}_n$ 是实数序列,其值被限制在集合 $\{-1, 0, 1\}$ 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信