{"title":"Design of passive radiative heating nanocomposite films by managing natural radiation energy","authors":"Sibel Kaplan, Dilara Melek Demirbek, Nazife Korkmaz Memis","doi":"10.1108/ijcst-01-2024-0019","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Personal thermal management by controlling the radiation energies of both the body and the sun can be used in all environments and contributes to sustainability components with the advantages of energy saving, low chemical usage and comfort enhancements under dynamic conditions. In this study, passive radiative heating nanocomposite films were produced using sodium alginate as the matrix and zinc oxide (ZnO) and aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) nanoparticles as nanofillers having far infrared radiation reflecting, hence passive heating functions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Nanocomposite film solutions were prepared by stirring sodium alginate powder, deionized water, ZnO and Al<sub>2</sub>O<sub>3</sub> nanoparticles (20% wt of matrix polymer) with surfactant using magnetic and ultrasonic stirrers in turn. Films produced within Petri dishes after drying at room temperature were analyzed by FT-IR, UV-VIS-NIR spectroscopy and SEM for chemical, radiation management and morphological characteristics, respectively. Emissivity values giving idea about the heating performances of the films were determined with an IR camera and a hotplate system. Moreover, direct heating performances were measured by the hotplate system including a far-infrared lamp.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Results showed that the emissivity of the films increased by approximately 18% and 16% with ZnO and Al<sub>2</sub>O<sub>3</sub> nanoparticles, respectively. Moreover, NaAlg–Al<sub>2</sub>O<sub>3</sub> nanocomposite film exhibited passive radiative heating performance of 3.58 °C, higher than the heating performance of NaAlg–ZnO nanocomposite film which is 2.97 °C when compared to the reference NaAlg film. These results indicate that both NaAlg–ZnO and especially NaAlg–Al<sub>2</sub>O<sub>3</sub> nanocomposite films have excellent far-infrared emission and absorption properties ensuring a significant heating effect.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In addition to other clothing types, the heating performance obtained with the produced nanocomposite structures may be applied to different types of cosmetic/medical applications (beauty mask, wound dresses, etc.) enabling skincare/healing with the advantage of the sodium alginate matrix.</p><!--/ Abstract__block -->","PeriodicalId":50330,"journal":{"name":"International Journal of Clothing Science and Technology","volume":"73 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clothing Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ijcst-01-2024-0019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Personal thermal management by controlling the radiation energies of both the body and the sun can be used in all environments and contributes to sustainability components with the advantages of energy saving, low chemical usage and comfort enhancements under dynamic conditions. In this study, passive radiative heating nanocomposite films were produced using sodium alginate as the matrix and zinc oxide (ZnO) and aluminum oxide (Al2O3) nanoparticles as nanofillers having far infrared radiation reflecting, hence passive heating functions.
Design/methodology/approach
Nanocomposite film solutions were prepared by stirring sodium alginate powder, deionized water, ZnO and Al2O3 nanoparticles (20% wt of matrix polymer) with surfactant using magnetic and ultrasonic stirrers in turn. Films produced within Petri dishes after drying at room temperature were analyzed by FT-IR, UV-VIS-NIR spectroscopy and SEM for chemical, radiation management and morphological characteristics, respectively. Emissivity values giving idea about the heating performances of the films were determined with an IR camera and a hotplate system. Moreover, direct heating performances were measured by the hotplate system including a far-infrared lamp.
Findings
Results showed that the emissivity of the films increased by approximately 18% and 16% with ZnO and Al2O3 nanoparticles, respectively. Moreover, NaAlg–Al2O3 nanocomposite film exhibited passive radiative heating performance of 3.58 °C, higher than the heating performance of NaAlg–ZnO nanocomposite film which is 2.97 °C when compared to the reference NaAlg film. These results indicate that both NaAlg–ZnO and especially NaAlg–Al2O3 nanocomposite films have excellent far-infrared emission and absorption properties ensuring a significant heating effect.
Originality/value
In addition to other clothing types, the heating performance obtained with the produced nanocomposite structures may be applied to different types of cosmetic/medical applications (beauty mask, wound dresses, etc.) enabling skincare/healing with the advantage of the sodium alginate matrix.
期刊介绍:
Addresses all aspects of the science and technology of clothing-objective measurement techniques, control of fibre and fabric, CAD systems, product testing, sewing, weaving and knitting, inspection systems, drape and finishing, etc. Academic and industrial research findings are published after a stringent review has taken place.