{"title":"Creep damage and fracture of turbine blade roots","authors":"Dmytro Breslavsky, Volodymyr Mietielov, Alyona Senko, Oksana Tatarinova, Ihor Palkov, Holm Altenbach","doi":"10.1177/14644207241269616","DOIUrl":null,"url":null,"abstract":"An approach to modeling creep fracture under a complex stress state using the Finite Element Method is proposed. The model of the turbine blade root was studied. The methodology of the transition in the analysis from the general 3D to the 2D stress state is proposed. For the models of the roots, the characteristics of the damage accumulation were obtained and the analysis of subsequent fracture in roots made of different materials was performed.The novel results of the description the creep fracture behavior after the period of damage accumulation were obtained. Based on the analysis of the numerical results, it was established that for different materials qualitatively different fracture processes occur in different places of the blade root. They were as follows: the fracture with separation of the main part of the root between the lower teeth; destruction of a separate tooth with a transition inside the root, as well as of a separate tooth jointly with the root’s lower part. A novel approach to obtaining the form of an equation for description the current length of a creep crack by use of numerical results is proposed.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241269616","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An approach to modeling creep fracture under a complex stress state using the Finite Element Method is proposed. The model of the turbine blade root was studied. The methodology of the transition in the analysis from the general 3D to the 2D stress state is proposed. For the models of the roots, the characteristics of the damage accumulation were obtained and the analysis of subsequent fracture in roots made of different materials was performed.The novel results of the description the creep fracture behavior after the period of damage accumulation were obtained. Based on the analysis of the numerical results, it was established that for different materials qualitatively different fracture processes occur in different places of the blade root. They were as follows: the fracture with separation of the main part of the root between the lower teeth; destruction of a separate tooth with a transition inside the root, as well as of a separate tooth jointly with the root’s lower part. A novel approach to obtaining the form of an equation for description the current length of a creep crack by use of numerical results is proposed.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).