Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces

Pub Date : 2024-08-05 DOI:10.1007/s11868-024-00633-y
Xinyu Chen, Jian Tan
{"title":"Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces","authors":"Xinyu Chen, Jian Tan","doi":"10.1007/s11868-024-00633-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a ball quasi-Banach function space on <span>\\({\\mathbb {R}}^{n}\\)</span> and <span>\\(h_{X}({\\mathbb {R}}^{n})\\)</span> the local Hardy space associated with <i>X</i>. In this paper, under some reasonable assumptions on both <i>X</i> and another ball quasi-Banach function space <i>Y</i>, we aim to derive the boundedness of pseudo-differential operators with symbols in <span>\\(S^{-\\alpha }_{1,\\delta }\\)</span> from <span>\\(h_{X}({\\mathbb {R}}^{n})\\)</span> to <span>\\(h_{Y}({\\mathbb {R}}^{n})\\)</span> via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space <span>\\(h^{p}_{\\omega }({\\mathbb {R}}^{n})\\)</span> and obtain the mapping property of the above pseudo-differential operators from <span>\\(h^{p}_{\\omega ^{p}}({\\mathbb {R}}^{n})\\)</span> to <span>\\(h^{q}_{\\omega ^{q}}({\\mathbb {R}}^{n})\\)</span>. Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00633-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a ball quasi-Banach function space on \({\mathbb {R}}^{n}\) and \(h_{X}({\mathbb {R}}^{n})\) the local Hardy space associated with X. In this paper, under some reasonable assumptions on both X and another ball quasi-Banach function space Y, we aim to derive the boundedness of pseudo-differential operators with symbols in \(S^{-\alpha }_{1,\delta }\) from \(h_{X}({\mathbb {R}}^{n})\) to \(h_{Y}({\mathbb {R}}^{n})\) via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space \(h^{p}_{\omega }({\mathbb {R}}^{n})\) and obtain the mapping property of the above pseudo-differential operators from \(h^{p}_{\omega ^{p}}({\mathbb {R}}^{n})\) to \(h^{q}_{\omega ^{q}}({\mathbb {R}}^{n})\). Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.

分享
查看原文
与球准巴拿赫函数空间相关的局部哈代空间上的伪微分算子
设 X 是 \({\mathbb {R}}^{n}\) 上的球准巴纳赫函数空间,且 \(h_{X}({\mathbb {R}}^{n})\ 是与 X 相关的局部哈代空间。在本文中,在对 X 和另一个球准巴纳赫函数空间 Y 的一些合理假设下,我们旨在通过应用外推定理,从 \(h_{X}({\mathbb {R}}^{n})\ 到 \(h_{Y}({\mathbb {R}}^{n})\ 得出符号在 \(S^{-\alpha }_{1,\delta }\) 中的伪微分算子的有界性。为了证明这一结果、我们还建立了加权局部哈代空间 \(h^{p}_{\omega }({\mathbb {R}}^{n})\ 的无限和有限原子分解,并得到了上述伪微分算子从 \(h^{p}_{\omega }({\mathbb {R}}^{n})\ 出发的映射性质。微分算子从 \(h^{p}_{\omega ^{p}}({\mathbb {R}}^{n})\) 到 \(h^{q}_{\omega ^{q}}({\mathbb {R}}^{n})\) 的映射性质。此外,上述结果具有广泛的通用性。例如,它们可以应用于可变勒贝格空间、洛伦兹空间、混合规范勒贝格空间、局部广义赫兹空间和混合赫兹空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信