Kuramoto variables as eigenvalues of unitary matrices

Marcel Novaes, Marcus A. M. de Aguiar
{"title":"Kuramoto variables as eigenvalues of unitary matrices","authors":"Marcel Novaes, Marcus A. M. de Aguiar","doi":"arxiv-2408.04035","DOIUrl":null,"url":null,"abstract":"We generalize the Kuramoto model by interpreting the $N$ variables on the\nunit circle as eigenvalues of a $N$-dimensional unitary matrix $U$, in three\nversions: general unitary, symmetric unitary and special orthogonal. The time\nevolution is generated by $N^2$ coupled differential equations for the matrix\nelements of $U$, and synchronization happens when $U$ evolves into a multiple\nof the identity. The Ott-Antonsen ansatz is related to the Poisson kernels that\nare so useful in quantum transport, and we prove it in the case of identical\nnatural frequencies. When the coupling constant is a matrix, we find some\nsurprising new dynamical behaviors.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the Kuramoto model by interpreting the $N$ variables on the unit circle as eigenvalues of a $N$-dimensional unitary matrix $U$, in three versions: general unitary, symmetric unitary and special orthogonal. The time evolution is generated by $N^2$ coupled differential equations for the matrix elements of $U$, and synchronization happens when $U$ evolves into a multiple of the identity. The Ott-Antonsen ansatz is related to the Poisson kernels that are so useful in quantum transport, and we prove it in the case of identical natural frequencies. When the coupling constant is a matrix, we find some surprising new dynamical behaviors.
作为单元矩阵特征值的仓本变量
我们将单位圆上的 N$ 变量解释为 N$ 维单元矩阵 $U$ 的特征值,从而推广了仓本模型,该矩阵有三个版本:一般单元矩阵、对称单元矩阵和特殊正交矩阵。时间演化是由 $U$ 矩阵元素的 $N^2$ 耦合微分方程产生的,当 $U$ 演化为同一性的倍数时,同步就发生了。奥特-安东森解析式与在量子传输中非常有用的泊松核有关,我们在相同自然频率的情况下证明了它。当耦合常数是一个矩阵时,我们发现了一些令人惊讶的新动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信