Schrödinger equation with finitely many \(\delta \)-interactions: closed form, integral and series representations for solutions

IF 1.4 3区 数学 Q1 MATHEMATICS
Vladislav V. Kravchenko, Víctor A. Vicente-Benítez
{"title":"Schrödinger equation with finitely many \\(\\delta \\)-interactions: closed form, integral and series representations for solutions","authors":"Vladislav V. Kravchenko,&nbsp;Víctor A. Vicente-Benítez","doi":"10.1007/s13324-024-00957-4","DOIUrl":null,"url":null,"abstract":"<div><p>A closed form solution for the one-dimensional Schrödinger equation with a finite number of <span>\\(\\delta \\)</span>-interactions </p><div><div><span>$$\\begin{aligned} {\\textbf{L}}_{q,{\\mathfrak {I}}_{N}}y:=-y^{\\prime \\prime }+\\left( q(x)+\\sum _{k=1}^{N}\\alpha _{k}\\delta (x-x_{k})\\right) y=\\lambda y,\\quad 0&lt;x&lt;b,\\;\\lambda \\in {\\mathbb {C}} \\end{aligned}$$</span></div></div><p>is presented in terms of the solution of the unperturbed equation </p><div><div><span>$$\\begin{aligned} {\\textbf{L}}_{q}y:=-y^{\\prime \\prime }+q(x)y=\\lambda y,\\quad 0&lt;x&lt;b,\\;\\lambda \\in {\\mathbb {C}} \\end{aligned}$$</span></div></div><p>and a corresponding transmutation (transformation) operator <span>\\({\\textbf{T}}_{{\\mathfrak {I}}_{N}}^{f}\\)</span> is obtained in the form of a Volterra integral operator. With the aid of the spectral parameter power series method, a practical construction of the image of the transmutation operator on a dense set is presented, and it is proved that the operator <span>\\({\\textbf{T}}_{{\\mathfrak {I}}_{N}}^{f}\\)</span> transmutes the second derivative into the Schrödinger operator <span>\\({\\textbf{L}}_{q,{\\mathfrak {I}}_{N}}\\)</span> on a Sobolev space <span>\\(H^{2}\\)</span>. A Fourier-Legendre series representation for the integral transmutation kernel is developed, from which a new representation for the solutions and their derivatives, in the form of a Neumann series of Bessel functions, is derived.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00957-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A closed form solution for the one-dimensional Schrödinger equation with a finite number of \(\delta \)-interactions

$$\begin{aligned} {\textbf{L}}_{q,{\mathfrak {I}}_{N}}y:=-y^{\prime \prime }+\left( q(x)+\sum _{k=1}^{N}\alpha _{k}\delta (x-x_{k})\right) y=\lambda y,\quad 0<x<b,\;\lambda \in {\mathbb {C}} \end{aligned}$$

is presented in terms of the solution of the unperturbed equation

$$\begin{aligned} {\textbf{L}}_{q}y:=-y^{\prime \prime }+q(x)y=\lambda y,\quad 0<x<b,\;\lambda \in {\mathbb {C}} \end{aligned}$$

and a corresponding transmutation (transformation) operator \({\textbf{T}}_{{\mathfrak {I}}_{N}}^{f}\) is obtained in the form of a Volterra integral operator. With the aid of the spectral parameter power series method, a practical construction of the image of the transmutation operator on a dense set is presented, and it is proved that the operator \({\textbf{T}}_{{\mathfrak {I}}_{N}}^{f}\) transmutes the second derivative into the Schrödinger operator \({\textbf{L}}_{q,{\mathfrak {I}}_{N}}\) on a Sobolev space \(H^{2}\). A Fourier-Legendre series representation for the integral transmutation kernel is developed, from which a new representation for the solutions and their derivatives, in the form of a Neumann series of Bessel functions, is derived.

Abstract Image

具有有限多个 $$\delta $$ 相互作用的薛定谔方程:解的闭合形式、积分和序列表示法
具有有限数量(delta)相互作用的一维薛定谔方程的闭式解 $$\begin{aligned} {\textbf{L}}_{q,{\mathfrak {I}}_{N}}y:=-y^{prime }+left( q(x)+sum _{k=1}^{N}\alpha _{k}\delta (x-x_{k})\right) y=\lambda y,\quad 0<x<b,\;\lambda\in {\mathbb {C}}\end{aligned}$$ 以未扰动方程 $$\begin{aligned} {\textbf{L}}_{q}y:=-y^{prime \prime }+q(x)y=\lambda y,\quad 0<x<b,\;\lambda \ in {\mathbb {C}} 的解的形式呈现。\end{aligned}$$和相应的嬗变(变换)算子 \({\textbf{T}}_{\mathfrak {I}_{N}}^{f}\) 以 Volterra 积分算子的形式得到。借助谱参数幂级数方法,提出了嬗变算子在密集集上的图像的实际构造、并证明算子 \({\textbf{T}}_{\mathfrak {I}}_{N}}^{f}\) 在索波列夫空间 \(H^{2}\) 上将二阶导数转换为薛定谔算子 \({\textbf{L}}_{q,{\mathfrak {I}}_{N}}\) 。我们建立了积分嬗变核的傅里叶-列根数列表示法,并由此导出了贝塞尔函数诺伊曼数列形式的解及其导数的新表示法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信