Luciana de Gennaro, Matteo Burgio, G. Lacalandra, Francesco Petronella, Alberto L’Abbate, Francesco Ravasini, B. Trombetta, Annalisa Rizzo, Mario Ventura, Vincenzo Cicirelli
{"title":"Genomic sequencing to detect cross-breeding quality in dogs: an example studying disorders in sexual development","authors":"Luciana de Gennaro, Matteo Burgio, G. Lacalandra, Francesco Petronella, Alberto L’Abbate, Francesco Ravasini, B. Trombetta, Annalisa Rizzo, Mario Ventura, Vincenzo Cicirelli","doi":"10.1101/2024.08.07.606952","DOIUrl":null,"url":null,"abstract":"Background Disorders of Sexual Development (DSD) in dogs, similar to humans, arise from irregularities in genetic determinants, gonadal differentiation, or phenotypic sex development. The French Bulldog, a breed that has seen a surge in popularity and demand, has also shown a marked increase in DSD incidence. This study aims to characterize the genetic underpinnings of DSD in a French Bulldog named Brutus, exhibiting ambiguous genitalia and internal sexual anatomy, and to explore the impact of breeding practices on genetic diversity within the breed. Methods We utilized a comprehensive approach combining conventional cytogenetics, molecular techniques, and deep sequencing to investigate the genetic profile of Brutus. The sequence data were compared to three other male French Bulldogs genome sequences with typical reproductive anatomy, including Brutus’s father, and the canine reference genome (CanFam6). Findings Our findings revealed a 22% mosaicism (78, XX/77, XX), the absence of the SRY gene, and the presence of 43 unique Single Nucleotide Variants (SNVs) not inherited from the father. Notably, the Run of Homozygosity (ROH) analysis showed Brutus has a significantly higher number of homozygous segments compared to other Bulldogs, with a total length of these fragments 50% greater than the average, strongly suggesting this dog is the product of the mating between siblings. While no direct causative genes for the DSD phenotype were identified four candidate loci warranting further investigation were highlighted. Conclusions Our study highlighted the need for a better annotated and curated reference dog genome to define genes causative of any specific phenotype, suggests a potential genetic basis for the DSD phenotype in dogs, and underscores the consequences of uncontrolled breeding practices in French Bulldogs. These findings highlight the importance of implementing strategic genetic management to preserve genetic health and diversity in canine populations.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.606952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background Disorders of Sexual Development (DSD) in dogs, similar to humans, arise from irregularities in genetic determinants, gonadal differentiation, or phenotypic sex development. The French Bulldog, a breed that has seen a surge in popularity and demand, has also shown a marked increase in DSD incidence. This study aims to characterize the genetic underpinnings of DSD in a French Bulldog named Brutus, exhibiting ambiguous genitalia and internal sexual anatomy, and to explore the impact of breeding practices on genetic diversity within the breed. Methods We utilized a comprehensive approach combining conventional cytogenetics, molecular techniques, and deep sequencing to investigate the genetic profile of Brutus. The sequence data were compared to three other male French Bulldogs genome sequences with typical reproductive anatomy, including Brutus’s father, and the canine reference genome (CanFam6). Findings Our findings revealed a 22% mosaicism (78, XX/77, XX), the absence of the SRY gene, and the presence of 43 unique Single Nucleotide Variants (SNVs) not inherited from the father. Notably, the Run of Homozygosity (ROH) analysis showed Brutus has a significantly higher number of homozygous segments compared to other Bulldogs, with a total length of these fragments 50% greater than the average, strongly suggesting this dog is the product of the mating between siblings. While no direct causative genes for the DSD phenotype were identified four candidate loci warranting further investigation were highlighted. Conclusions Our study highlighted the need for a better annotated and curated reference dog genome to define genes causative of any specific phenotype, suggests a potential genetic basis for the DSD phenotype in dogs, and underscores the consequences of uncontrolled breeding practices in French Bulldogs. These findings highlight the importance of implementing strategic genetic management to preserve genetic health and diversity in canine populations.