Nanostructured Composites: Modelling for Tailored Industrial Application

Q2 Engineering
Gh Owais Shah, Gaurav Arora
{"title":"Nanostructured Composites: Modelling for Tailored Industrial Application","authors":"Gh Owais Shah, Gaurav Arora","doi":"10.14416/j.asep.2024.08.004","DOIUrl":null,"url":null,"abstract":"This comprehensive study explores the application of metallic, polymeric, and hybrid nanocomposites, particularly integrating carbon nanotubes (CNTs) to enhance mechanical properties. Various mathematical models predict critical properties like elastic modulus, with analyses assessing mechanical behavior across different CNT volume fractions. Findings emphasize the influence of fiber distribution and porosity on mechanical properties, with clusters acting as stress concentrators. Matrix materials include Aluminum 356 and HDPE, with CNTs and Coir fibers as reinforcements, and hybrid composites combining HDPE, Coir, and CNTs are studied. Elastic modulus calculations employ micromechanical models, with results varying based on volume fractions and composite compositions. Experimental validation enhances technical robustness, ensuring applicability in real-world scenarios. Aerospace applications favor models like Combined Voigt–Reuss, Halpin–Tsai Equations, and Hashin–Strikman for their accuracy and computational efficiency, while automotive applications prefer Halpin–Tsai Equations and Combined Equations for practical use. These models balance accuracy and computational efficiency, providing valuable insights for industrial applications. The calculated effective modulus ranged from 81.67 GPa to 118.78 GPa for Al-CNT composites, from 11.09 GPa to 51.05 GPa for HDPE-CNT composites, and from 1.15 GPa to 1.34 GPa for HDPE-Coir composites, showcasing the wide range of mechanical properties achievable through different composite compositions and volume fractions.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"44 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2024.08.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive study explores the application of metallic, polymeric, and hybrid nanocomposites, particularly integrating carbon nanotubes (CNTs) to enhance mechanical properties. Various mathematical models predict critical properties like elastic modulus, with analyses assessing mechanical behavior across different CNT volume fractions. Findings emphasize the influence of fiber distribution and porosity on mechanical properties, with clusters acting as stress concentrators. Matrix materials include Aluminum 356 and HDPE, with CNTs and Coir fibers as reinforcements, and hybrid composites combining HDPE, Coir, and CNTs are studied. Elastic modulus calculations employ micromechanical models, with results varying based on volume fractions and composite compositions. Experimental validation enhances technical robustness, ensuring applicability in real-world scenarios. Aerospace applications favor models like Combined Voigt–Reuss, Halpin–Tsai Equations, and Hashin–Strikman for their accuracy and computational efficiency, while automotive applications prefer Halpin–Tsai Equations and Combined Equations for practical use. These models balance accuracy and computational efficiency, providing valuable insights for industrial applications. The calculated effective modulus ranged from 81.67 GPa to 118.78 GPa for Al-CNT composites, from 11.09 GPa to 51.05 GPa for HDPE-CNT composites, and from 1.15 GPa to 1.34 GPa for HDPE-Coir composites, showcasing the wide range of mechanical properties achievable through different composite compositions and volume fractions.
纳米结构复合材料:为量身定制的工业应用建模
本综合研究探讨了金属、聚合物和混合纳米复合材料的应用,特别是碳纳米管(CNT)在增强机械性能方面的应用。各种数学模型预测了弹性模量等关键性能,并对不同 CNT 体积分数的机械行为进行了分析评估。研究结果强调了纤维分布和孔隙率对机械性能的影响,其中纤维簇起到了应力集中器的作用。基体材料包括铝 356 和高密度聚乙烯,并以碳纳米管和椰壳纤维作为增强材料,还研究了高密度聚乙烯、椰壳纤维和碳纳米管的混合复合材料。弹性模量计算采用微机械模型,计算结果因体积分数和复合材料成分而异。实验验证增强了技术的稳健性,确保了在现实世界中的适用性。航空航天应用偏爱 Voigt-Reuss 组合方程、Halpin-Tsai 方程和 Hashin-Strikman 等模型,因为它们具有准确性和计算效率,而汽车应用偏爱 Halpin-Tsai 方程和组合方程,因为它们具有实用性。这些模型兼顾了精度和计算效率,为工业应用提供了宝贵的见解。铝-CNT 复合材料的有效模量计算值从 81.67 GPa 到 118.78 GPa 不等,高密度聚乙烯-CNT 复合材料的有效模量计算值从 11.09 GPa 到 51.05 GPa 不等,高密度聚乙烯-掺杂物复合材料的有效模量计算值从 1.15 GPa 到 1.34 GPa 不等,这表明通过不同的复合材料成分和体积分数可以实现广泛的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信