Jiwei Yao, Qiang Gao, Tao Gao, Benben Jiang, Kody M. Powell
{"title":"A Physics–Guided Machine Learning Approach for Capacity Fading Mechanism Detection and Fading Rate Prediction Using Early Cycle Data","authors":"Jiwei Yao, Qiang Gao, Tao Gao, Benben Jiang, Kody M. Powell","doi":"10.3390/batteries10080283","DOIUrl":null,"url":null,"abstract":"Lithium–ion battery development necessitates predicting capacity fading using early cycle data to minimize testing time and costs. This study introduces a hybrid physics–guided data–driven approach to address this challenge by accurately determining the dominant fading mechanism and predicting the average capacity fading rate. Physics–guided features, derived from the electrochemical properties and behaviors within the battery, are extracted from the first five cycles to provide meaningful, interpretable, and predictive data. Unlike previous models that rely on a single regression approach, our method utilizes two separate regression models tailored to the identified dominant fading mechanisms. Our model achieves 95.6% accuracy in determining the dominant fading mechanism using data from the second cycle and a mean absolute percentage error of 17.09% in predicting lifetime capacity fade from the first five cycles. This represents a substantial improvement over state–of–the–art models, which have an error rate approximately three times higher. This study underscores the significance of physics–guided data characterization and the necessity of identifying the primary fading mechanism prior to predicting the capacity fading rate in lithium–ion batteries.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"38 13","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10080283","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium–ion battery development necessitates predicting capacity fading using early cycle data to minimize testing time and costs. This study introduces a hybrid physics–guided data–driven approach to address this challenge by accurately determining the dominant fading mechanism and predicting the average capacity fading rate. Physics–guided features, derived from the electrochemical properties and behaviors within the battery, are extracted from the first five cycles to provide meaningful, interpretable, and predictive data. Unlike previous models that rely on a single regression approach, our method utilizes two separate regression models tailored to the identified dominant fading mechanisms. Our model achieves 95.6% accuracy in determining the dominant fading mechanism using data from the second cycle and a mean absolute percentage error of 17.09% in predicting lifetime capacity fade from the first five cycles. This represents a substantial improvement over state–of–the–art models, which have an error rate approximately three times higher. This study underscores the significance of physics–guided data characterization and the necessity of identifying the primary fading mechanism prior to predicting the capacity fading rate in lithium–ion batteries.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.