Guidance on Selecting Optimal Steady-State Tacrolimus Concentrations for Continuous IV Perfusion: Insights from Physiologically Based Pharmacokinetic Modeling
Romain Martischang, Argyro Nikolaou, Youssef Daali, C. Samer, Jean Terrier
{"title":"Guidance on Selecting Optimal Steady-State Tacrolimus Concentrations for Continuous IV Perfusion: Insights from Physiologically Based Pharmacokinetic Modeling","authors":"Romain Martischang, Argyro Nikolaou, Youssef Daali, C. Samer, Jean Terrier","doi":"10.3390/ph17081047","DOIUrl":null,"url":null,"abstract":"Introduction: The dose–response relationships of tacrolimus have been primarily assessed through trough concentrations during intermittent administrations. In scenarios where oral administration (PO) is unfeasible, continuous intravenous (IV) administration is advised. Under these circumstances, only steady-state (Css) plasma or blood concentrations are measured, with the absence of distinct trough levels (Cmin). Consequently, the measured concentrations are frequently misinterpreted as trough concentrations, potentially resulting in sub-therapeutic true tacrolimus blood levels. This study employs physiologically based pharmacokinetic modeling (PBPK) to establish the Css/Cmin ratio for tacrolimus across various clinical scenarios. Method: Using a validated PBPK model, the tacrolimus dose (both PO and IV) and the Css/Cmin ratios corresponding to matching area under the blood concentration–time curve during a dosage interval (AUCτ) values were estimated under different conditions, including healthy subjects and individuals exhibiting cytochrome P450 3A (CYP3A) interactions or CYP3A5 polymorphisms, along with a demonstration of a real-life clinical application. Result: In healthy volunteers, the oral/intravenous (PO/IV) dose ratio was found to be 4.25, and the Css/Cmin ratio was 1.40. A specific clinical case substantiated the practical applicability of the Css/Cmin ratio as simulated by PBPK, demonstrating no immediate clinical complications related to the transplant. When considering liver donors versus recipients expressing CYP3A5, the tacrolimus AUCτ was notably affected, yielding a PO/IV dose ratio of 4.00 and a Css/Cmin ratio of 1.75. Furthermore, the concomitant administration of the CYP3A inhibitor itraconazole given PO resulted in a PO/IV ratio of 1.75 with and a Css/Cmin ratio of 1.28. Notably, the inhibitory effect of itraconazole was diminished when administered IV. Conclusions: Through the application of PBPK methodologies, this study estimates the PO/IV dose ratios and Css/Cmin ratios that can enhance dose adjustment and therapeutic drug monitoring during the switch between IV and PO administration of tacrolimus in transplant patients, ultimately guiding clinicians in real-time decision-making. Further validation with in vivo data is recommended to support these findings.","PeriodicalId":509865,"journal":{"name":"Pharmaceuticals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ph17081047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The dose–response relationships of tacrolimus have been primarily assessed through trough concentrations during intermittent administrations. In scenarios where oral administration (PO) is unfeasible, continuous intravenous (IV) administration is advised. Under these circumstances, only steady-state (Css) plasma or blood concentrations are measured, with the absence of distinct trough levels (Cmin). Consequently, the measured concentrations are frequently misinterpreted as trough concentrations, potentially resulting in sub-therapeutic true tacrolimus blood levels. This study employs physiologically based pharmacokinetic modeling (PBPK) to establish the Css/Cmin ratio for tacrolimus across various clinical scenarios. Method: Using a validated PBPK model, the tacrolimus dose (both PO and IV) and the Css/Cmin ratios corresponding to matching area under the blood concentration–time curve during a dosage interval (AUCτ) values were estimated under different conditions, including healthy subjects and individuals exhibiting cytochrome P450 3A (CYP3A) interactions or CYP3A5 polymorphisms, along with a demonstration of a real-life clinical application. Result: In healthy volunteers, the oral/intravenous (PO/IV) dose ratio was found to be 4.25, and the Css/Cmin ratio was 1.40. A specific clinical case substantiated the practical applicability of the Css/Cmin ratio as simulated by PBPK, demonstrating no immediate clinical complications related to the transplant. When considering liver donors versus recipients expressing CYP3A5, the tacrolimus AUCτ was notably affected, yielding a PO/IV dose ratio of 4.00 and a Css/Cmin ratio of 1.75. Furthermore, the concomitant administration of the CYP3A inhibitor itraconazole given PO resulted in a PO/IV ratio of 1.75 with and a Css/Cmin ratio of 1.28. Notably, the inhibitory effect of itraconazole was diminished when administered IV. Conclusions: Through the application of PBPK methodologies, this study estimates the PO/IV dose ratios and Css/Cmin ratios that can enhance dose adjustment and therapeutic drug monitoring during the switch between IV and PO administration of tacrolimus in transplant patients, ultimately guiding clinicians in real-time decision-making. Further validation with in vivo data is recommended to support these findings.