The time‐fractional ISPH method for fin circular rotation on MHD bioconvection flow of oxytactic microorganisms and NEPCM within a hexagonal‐shaped cavity

Fawzia Awad, Z. Raizah, Abdelraheem M. Aly
{"title":"The time‐fractional ISPH method for fin circular rotation on MHD bioconvection flow of oxytactic microorganisms and NEPCM within a hexagonal‐shaped cavity","authors":"Fawzia Awad, Z. Raizah, Abdelraheem M. Aly","doi":"10.1002/zamm.202400132","DOIUrl":null,"url":null,"abstract":"This work investigates the bioconvection flow of oxytactic microorganisms and nanoparticle‐enhanced phase change material (NEPCM) within a hexagonal‐shaped cavity containing a rotated cross fin, utilizing the incompressible smoothed particle hydrodynamics (ISPH) method based on a time‐fractional derivative. The study considers the circular rotation of an inner cross fin and the presence of two rectangular heat sources on the plane walls inside the hexagonal cavity. The novelty of this work is its integration of a hexagonal‐shaped cavity with a rotated cross fin and the use of a time‐fractional derivative in the ISPH method to analyze bioconvection flow, offering new insights into the interaction between microorganism motion and heat transfer dynamics in complex geometries. The effects of Darcy, Hartmann, Lewis, Peclet, Rayleigh, and bioconvection Rayleigh numbers on isotherms, heat capacity ratio, microorganism density, velocity fields, and average Nusselt number are analyzed. The key findings demonstrate the significant impact of Rayleigh and bioconvection Rayleigh numbers in enhancing heat distribution and velocity fields, thereby significantly influencing microorganism motion. Due to Lorentz forces, the velocity field decreases by with an increase in the Hartmann number from 0 to 50. The resistance of the nanofluid's velocity becomes apparent as the Darcy number decreases. Increasing Lewis and Péclet numbers cause the microorganisms to shift towards the cavity's boundaries.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the bioconvection flow of oxytactic microorganisms and nanoparticle‐enhanced phase change material (NEPCM) within a hexagonal‐shaped cavity containing a rotated cross fin, utilizing the incompressible smoothed particle hydrodynamics (ISPH) method based on a time‐fractional derivative. The study considers the circular rotation of an inner cross fin and the presence of two rectangular heat sources on the plane walls inside the hexagonal cavity. The novelty of this work is its integration of a hexagonal‐shaped cavity with a rotated cross fin and the use of a time‐fractional derivative in the ISPH method to analyze bioconvection flow, offering new insights into the interaction between microorganism motion and heat transfer dynamics in complex geometries. The effects of Darcy, Hartmann, Lewis, Peclet, Rayleigh, and bioconvection Rayleigh numbers on isotherms, heat capacity ratio, microorganism density, velocity fields, and average Nusselt number are analyzed. The key findings demonstrate the significant impact of Rayleigh and bioconvection Rayleigh numbers in enhancing heat distribution and velocity fields, thereby significantly influencing microorganism motion. Due to Lorentz forces, the velocity field decreases by with an increase in the Hartmann number from 0 to 50. The resistance of the nanofluid's velocity becomes apparent as the Darcy number decreases. Increasing Lewis and Péclet numbers cause the microorganisms to shift towards the cavity's boundaries.
六角形空腔内氧接触微生物和 NEPCM 的 MHD 生物对流的时间分数 ISPH 法 fin circular rotation
本研究利用基于时间分数导数的不可压缩平滑粒子流体力学(ISPH)方法,研究了氧接触微生物和纳米粒子增强相变材料(NEPCM)在包含旋转横鳍的六边形空腔内的生物对流。研究考虑了内横鳍的圆周旋转以及六边形空腔内平面壁上存在两个矩形热源的情况。这项工作的新颖之处在于将带有旋转横鳍的六角形空腔与 ISPH 方法中的时间分数导数相结合来分析生物对流,从而为复杂几何形状中微生物运动与传热动力学之间的相互作用提供了新的见解。分析了达西数、哈特曼数、刘易斯数、佩克莱数、瑞利数和生物对流瑞利数对等温线、热容比、微生物密度、速度场和平均努塞尔特数的影响。主要研究结果表明,雷利数和生物对流雷利数在增强热分布和速度场方面具有重要影响,从而对微生物的运动产生重大影响。由于洛伦兹力的作用,速度场随着哈特曼数从 0 增加到 50 而减小。随着达西数的减小,纳米流体的速度阻力变得明显。路易斯数和佩克莱特数的增加导致微生物向空腔边界移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信