Generating Synthetic Task-based Brain Fingerprints for Population Neuroscience Using Deep Learning

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.03.606469
Emin Serin, Kerstin Ritter, Gunter Schumann, Tobias Banaschewski, A. Marquand, H. Walter
{"title":"Generating Synthetic Task-based Brain Fingerprints for Population Neuroscience Using Deep Learning","authors":"Emin Serin, Kerstin Ritter, Gunter Schumann, Tobias Banaschewski, A. Marquand, H. Walter","doi":"10.1101/2024.08.03.606469","DOIUrl":null,"url":null,"abstract":"Task-based functional magnetic resonance imaging (tb-fMRI) provides valuable insights into individual differences in the neural basis of cognitive functions because it links specific cognitive tasks to their evoked neural responses. Yet, it is challenging to scale to population-level data due to its cognitive demands, variations in task design across studies, and a limited number of tasks acquired in typical large-scale studies. Here, we present DeepTaskGen, a convolutional neural network (CNN) approach that enables us to generate synthetic task-based contrast maps from resting-state fMRI (rs-fMRI) data. Our method outperforms several benchmarks, exhibiting superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We showcase DeepTaskGen by generating synthetic task images from the UK Biobank cohort, achieving competitive or greater performance compared to actual task contrast maps and resting-state connectomes for predicting a wide range of demographic, cognitive, and clinical variables. This approach will facilitate the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.03.606469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Task-based functional magnetic resonance imaging (tb-fMRI) provides valuable insights into individual differences in the neural basis of cognitive functions because it links specific cognitive tasks to their evoked neural responses. Yet, it is challenging to scale to population-level data due to its cognitive demands, variations in task design across studies, and a limited number of tasks acquired in typical large-scale studies. Here, we present DeepTaskGen, a convolutional neural network (CNN) approach that enables us to generate synthetic task-based contrast maps from resting-state fMRI (rs-fMRI) data. Our method outperforms several benchmarks, exhibiting superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We showcase DeepTaskGen by generating synthetic task images from the UK Biobank cohort, achieving competitive or greater performance compared to actual task contrast maps and resting-state connectomes for predicting a wide range of demographic, cognitive, and clinical variables. This approach will facilitate the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.
利用深度学习为群体神经科学生成基于任务的合成大脑指纹
基于任务的功能磁共振成像(tb-fMRI)能将特定的认知任务与其诱发的神经反应联系起来,从而为认知功能神经基础的个体差异提供有价值的见解。然而,由于其认知要求、不同研究中任务设计的差异以及典型大规模研究中获取的任务数量有限,将其扩展到群体级数据具有挑战性。在此,我们介绍一种卷积神经网络(CNN)方法 DeepTaskGen,它能让我们从静息态 fMRI(rs-fMRI)数据中生成基于任务的合成对比图。我们的方法优于多项基准测试,表现出卓越的重构性能,同时保留了生物标记开发所必需的个体间差异。我们通过生成英国生物库队列中的合成任务图像展示了 DeepTaskGen,与实际任务对比图和静息态连接组相比,它在预测各种人口、认知和临床变量方面取得了具有竞争力或更高的性能。这种方法可以从随时可用的 rs-fMRI 数据中生成任意功能认知任务,从而促进个体差异研究和任务相关生物标记物的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信