Blockchain-Enabled Decentralized Healthcare Data Exchange: Leveraging Novel Encryption Scheme, Smart Contracts, and Ring Signatures for Enhanced Data Security and Patient Privacy
IF 1.5 4区 计算机科学Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Blockchain-Enabled Decentralized Healthcare Data Exchange: Leveraging Novel Encryption Scheme, Smart Contracts, and Ring Signatures for Enhanced Data Security and Patient Privacy","authors":"S. Vidhya, P. M. Siva Raja, R. P. Sumithra","doi":"10.1002/nem.2289","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The healthcare industry has undergone a digital transformation in recent years, with the adoption of electronic health records (EHRs) becoming increasingly prevalent. While this digitization offers various advantages, concerns regarding the security and privacy of sensitive medical data have also intensified. Data breaches and cyber-attacks targeting healthcare organizations have underscored the need for robust solutions to protect patient data. Blockchain technology has emerged as a promising solution due to its decentralized and immutable nature, which ensures secure and transparent data recording. This paper proposes a novel approach that combines blockchain with advanced encryption scheme and privacy protection technique to establish a secure and privacy protected medical data sharing environment. The proposed system consists of three phases such as initialization phase, data processing phase, and authentication phase. The hybrid Feistal-Shannon homomorphic encryption algorithm (HFSHE) is proposed to encrypt the medical data to ensure data confidentiality, integrity, and availability. Ring signature is integrated to the system to provide additional anonymity and protect the identities of the participants involved in data transactions. In addition, the smart contract developed performs authentication checks on users, generates a time seal, and verifies the ring signature. Through this enhancement, the system becomes more resilient to both external and internal threats, enhancing overall security as well as privacy. A comprehensive security analysis is conducted to compare the proposed method's performance against existing techniques. The results demonstrate the effectiveness of the proposed approach in safeguarding sensitive medical information within the blockchain ecosystem.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2289","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The healthcare industry has undergone a digital transformation in recent years, with the adoption of electronic health records (EHRs) becoming increasingly prevalent. While this digitization offers various advantages, concerns regarding the security and privacy of sensitive medical data have also intensified. Data breaches and cyber-attacks targeting healthcare organizations have underscored the need for robust solutions to protect patient data. Blockchain technology has emerged as a promising solution due to its decentralized and immutable nature, which ensures secure and transparent data recording. This paper proposes a novel approach that combines blockchain with advanced encryption scheme and privacy protection technique to establish a secure and privacy protected medical data sharing environment. The proposed system consists of three phases such as initialization phase, data processing phase, and authentication phase. The hybrid Feistal-Shannon homomorphic encryption algorithm (HFSHE) is proposed to encrypt the medical data to ensure data confidentiality, integrity, and availability. Ring signature is integrated to the system to provide additional anonymity and protect the identities of the participants involved in data transactions. In addition, the smart contract developed performs authentication checks on users, generates a time seal, and verifies the ring signature. Through this enhancement, the system becomes more resilient to both external and internal threats, enhancing overall security as well as privacy. A comprehensive security analysis is conducted to compare the proposed method's performance against existing techniques. The results demonstrate the effectiveness of the proposed approach in safeguarding sensitive medical information within the blockchain ecosystem.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.