M. Z. Chen, D. Yuen, Victoria M. McLeod, Ken W. Yong, Cameron H Smyth, Bruna Rossi Herling, Thomas Payne, Stewart A. Fabb, M. Belousoff, Azizah Algarni, Patrick M. Sexton, C. J. Porter, Colin W. Pouton, A. Johnston
{"title":"A Versatile Antibody Capture System that Drives Precise In Vivo Delivery of mRNA loaded Lipid Nanoparticles and Enhances Gene Expression","authors":"M. Z. Chen, D. Yuen, Victoria M. McLeod, Ken W. Yong, Cameron H Smyth, Bruna Rossi Herling, Thomas Payne, Stewart A. Fabb, M. Belousoff, Azizah Algarni, Patrick M. Sexton, C. J. Porter, Colin W. Pouton, A. Johnston","doi":"10.1101/2024.08.07.607101","DOIUrl":null,"url":null,"abstract":"Efficient and precise delivery of mRNA is critical to advance mRNA therapies beyond their current use as vaccines. Lipid nanoparticles (LNP) efficiently encapsulate and protect mRNA, but non-specific cellular uptake may lead to off-target delivery and minimal delivery to target cells. Functionalizing LNPs with antibodies enables targeted mRNA delivery, but traditional modification techniques require complex conjugation and purification, which often reduces antibody affinity. Here, we present a simple method for capturing antibodies in their optimal orientation on LNPs, without antibody modification or complex purification. This strategy uses an optimally oriented anti-Fc nanobody on the LNP surface to capture antibodies, resulting in protein expression levels >1000 times higher than non-targeted LNPs and >8 times higher than conventional antibody functionalization techniques. These precisely targeted LNPs showed highly efficient in vivo targeting to T cells, with minimal delivery to other immune cells. This approach enables the rapid development of targeted LNPs and has the potential to broaden the use of mRNA therapies.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and precise delivery of mRNA is critical to advance mRNA therapies beyond their current use as vaccines. Lipid nanoparticles (LNP) efficiently encapsulate and protect mRNA, but non-specific cellular uptake may lead to off-target delivery and minimal delivery to target cells. Functionalizing LNPs with antibodies enables targeted mRNA delivery, but traditional modification techniques require complex conjugation and purification, which often reduces antibody affinity. Here, we present a simple method for capturing antibodies in their optimal orientation on LNPs, without antibody modification or complex purification. This strategy uses an optimally oriented anti-Fc nanobody on the LNP surface to capture antibodies, resulting in protein expression levels >1000 times higher than non-targeted LNPs and >8 times higher than conventional antibody functionalization techniques. These precisely targeted LNPs showed highly efficient in vivo targeting to T cells, with minimal delivery to other immune cells. This approach enables the rapid development of targeted LNPs and has the potential to broaden the use of mRNA therapies.