Emergent chirality in active solid rotation of pancreas spheres

PRX Life Pub Date : 2024-08-08 DOI:10.1103/prxlife.2.033006
Tzer Han Tan, Aboutaleb Amiri, Irene Seijo-Barandiarán, Michael F Staddon, Anne Materne, Sandra Tomas, C. Duclut, Marko Popović, A. Grapin-Botton, Frank Jülicher
{"title":"Emergent chirality in active solid rotation of pancreas spheres","authors":"Tzer Han Tan, Aboutaleb Amiri, Irene Seijo-Barandiarán, Michael F Staddon, Anne Materne, Sandra Tomas, C. Duclut, Marko Popović, A. Grapin-Botton, Frank Jülicher","doi":"10.1103/prxlife.2.033006","DOIUrl":null,"url":null,"abstract":"Collective cell dynamics play a crucial role in many developmental and physiological contexts. While two-dimensional (2D) cell migration has been widely studied, how three-dimensional (3D) geometry and topology interplay with collective cell behavior to determine dynamics and functions remains an open question. In this work, we elucidate the biophysical mechanism underlying rotation in spherical tissues, a phenomenon widely reported both and . Using murine pancreas-derived organoids as a model system, we find that epithelial spheres exhibit persistent rotation, rotational axis drift, and rotation arrest. Using a 3D vertex model, we demonstrate how the combined action of traction force and polarity alignment can account for these distinct rotational dynamics near a solid to flow transition. Furthermore, our analysis shows that the spherical tissue rotates as an active solid occasionally switching to a flowing state and exhibits spontaneous chiral symmetry breaking. Using a continuum model, we demonstrate how the topological defects in the polarity field underlie this symmetry breaking process, which is revealed by asymmetries in the cell elongation pattern. For cell elongation to reveal the chiral asymmetry, shear flow is required in addition to the solid body rotation. Altogether, our work reveals a robust chiral symmetry breaking mechanism with potential implications for left-right symmetry breaking processes in morphogenetic events.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":420529,"journal":{"name":"PRX Life","volume":"111 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.2.033006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collective cell dynamics play a crucial role in many developmental and physiological contexts. While two-dimensional (2D) cell migration has been widely studied, how three-dimensional (3D) geometry and topology interplay with collective cell behavior to determine dynamics and functions remains an open question. In this work, we elucidate the biophysical mechanism underlying rotation in spherical tissues, a phenomenon widely reported both and . Using murine pancreas-derived organoids as a model system, we find that epithelial spheres exhibit persistent rotation, rotational axis drift, and rotation arrest. Using a 3D vertex model, we demonstrate how the combined action of traction force and polarity alignment can account for these distinct rotational dynamics near a solid to flow transition. Furthermore, our analysis shows that the spherical tissue rotates as an active solid occasionally switching to a flowing state and exhibits spontaneous chiral symmetry breaking. Using a continuum model, we demonstrate how the topological defects in the polarity field underlie this symmetry breaking process, which is revealed by asymmetries in the cell elongation pattern. For cell elongation to reveal the chiral asymmetry, shear flow is required in addition to the solid body rotation. Altogether, our work reveals a robust chiral symmetry breaking mechanism with potential implications for left-right symmetry breaking processes in morphogenetic events. Published by the American Physical Society 2024
胰腺球主动固体旋转中出现的手性
细胞集体动力学在许多发育和生理环境中发挥着至关重要的作用。虽然二维(2D)细胞迁移已被广泛研究,但三维(3D)几何和拓扑如何与细胞集体行为相互作用以决定动态和功能仍是一个未决问题。在这项研究中,我们阐明了球形组织旋转背后的生物物理机制,这种现象被广泛报道。以小鼠胰腺衍生的器官组织为模型系统,我们发现上皮细胞球体表现出持续旋转、旋转轴漂移和旋转停滞。利用三维顶点模型,我们展示了牵引力和极性排列的共同作用如何解释这些不同的旋转动力学,即从固态到流动的转变。此外,我们的分析表明,球形组织在偶尔切换到流动状态时会作为活性固体旋转,并表现出自发的手性对称破缺。利用连续体模型,我们证明了极性场中的拓扑缺陷是如何支撑这一对称性破坏过程的,细胞伸长模式的不对称揭示了这一过程。要使细胞伸长揭示手性不对称,除了固体旋转外,还需要剪切流。总之,我们的研究揭示了一种强大的手性对称破缺机制,对形态发生过程中的左右对称破缺过程具有潜在影响。 美国物理学会出版 2024
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信