Jérôme Saunier, Ashwin Chinnayya, Elodie Kaeshammer, Maxime Reynaud, M. Genetier
{"title":"Mesoscale modeling of the Shock‐to‐Detonation Transition of pressed‐HMX based on a surface regression model","authors":"Jérôme Saunier, Ashwin Chinnayya, Elodie Kaeshammer, Maxime Reynaud, M. Genetier","doi":"10.1002/prep.202400125","DOIUrl":null,"url":null,"abstract":"Shock‐to‐Detonation Transition (SDT) of heterogeneous high explosives results from processes occurring at the microstructural level. Thus, mesoscale modeling is expected to allow a better comprehension of the SDT. Recent experimental evidence suggested that hotspots mainly developed on the surface of the energetic crystals, which are then consumed by the propagation of a deflagration front. In the present study, mesoscale simulations of the SDT of pressed HMX were performed. The reactive model employed consisted of igniting the surface of the crystals after the shock passage, and reconstructing the burn front propagation, using a modified Youngs’ method. In this reactive model, the velocity of the deflagration front was modeled by a pressure‐dependent law, as suggested by the literature. The simulations showed that the Single Curve Initiation principle remained valid. The parameter deflagration velocity times the surface to volume ratio was found to enable the equivalence between microstructures. This approach provides a new framework to study the SDT of heterogeneous explosives, by considering how the combustion of energetic crystals participate to the shock acceleration and transition into a detonation. This paper serves as a proof of concept, applied to the pressed HMX.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202400125","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Shock‐to‐Detonation Transition (SDT) of heterogeneous high explosives results from processes occurring at the microstructural level. Thus, mesoscale modeling is expected to allow a better comprehension of the SDT. Recent experimental evidence suggested that hotspots mainly developed on the surface of the energetic crystals, which are then consumed by the propagation of a deflagration front. In the present study, mesoscale simulations of the SDT of pressed HMX were performed. The reactive model employed consisted of igniting the surface of the crystals after the shock passage, and reconstructing the burn front propagation, using a modified Youngs’ method. In this reactive model, the velocity of the deflagration front was modeled by a pressure‐dependent law, as suggested by the literature. The simulations showed that the Single Curve Initiation principle remained valid. The parameter deflagration velocity times the surface to volume ratio was found to enable the equivalence between microstructures. This approach provides a new framework to study the SDT of heterogeneous explosives, by considering how the combustion of energetic crystals participate to the shock acceleration and transition into a detonation. This paper serves as a proof of concept, applied to the pressed HMX.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.