Preparation, Thermal Behavior, and Conformational Stability of HMX/Cyclopentanone Cocrystallization

Crystals Pub Date : 2024-08-08 DOI:10.3390/cryst14080711
Yuting Tao, Shaohua Jin, Tongbin Wang, Chongchong She, Kun Chen, Junfeng Wang, Lijie Li
{"title":"Preparation, Thermal Behavior, and Conformational Stability of HMX/Cyclopentanone Cocrystallization","authors":"Yuting Tao, Shaohua Jin, Tongbin Wang, Chongchong She, Kun Chen, Junfeng Wang, Lijie Li","doi":"10.3390/cryst14080711","DOIUrl":null,"url":null,"abstract":"The cocrystallization of 1,3,5,7-tetranitro-1,3,5,7-tetrazolidine (HMX) with cyclopentanone was achieved via a controlled cooling method, followed by comprehensive characterization that confirmed the α-configuration of HMX within the cocrystal. The enthalpy of dissolution of HMX in cyclopentanone was assessed across a range of temperatures using a C-80 Calvert microcalorimeter, revealing an endothermic dissolution process. Subsequently, the molar enthalpy of dissolution was determined, and kinetic equations describing the dissolution rate were derived for temperatures of 303.15, 308.15, 313.15, 318.15, and 323.15 K as follows: dα⁄dt = 10−2.46(1 − α)0.35, dα⁄dt = 10−2.19(1 − α)0.79, dα⁄dt = 10−1.76(1 − α)1.32, dα⁄dt = 10−1.86(1 − α)0.46, and dα⁄dt = 10−2.02(1 − α)0.70, respectively. Additionally, molecular dynamics (MD) simulations investigated the intermolecular interactions of the HMX/cyclopentanone cocrystallization process, demonstrating a transformation of HMX from β- to α-conformation within the cyclopentanone environment. Theoretical calculations performed at the ωB97XD/6-311G(d,p) level affirmed that α-HMX exhibited stronger binding affinity toward cyclopentanone compared to β-HMX, corroborating experimental findings. A comprehensive understanding of the dissolution behavior of HMX in cyclopentanone holds significant implications for crystal growth methodologies and cocrystallization processes. Such insights are pivotal for optimizing HMX dissolution processes and offer valuable perspectives for developing and designing advanced energetic materials.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"9 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14080711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cocrystallization of 1,3,5,7-tetranitro-1,3,5,7-tetrazolidine (HMX) with cyclopentanone was achieved via a controlled cooling method, followed by comprehensive characterization that confirmed the α-configuration of HMX within the cocrystal. The enthalpy of dissolution of HMX in cyclopentanone was assessed across a range of temperatures using a C-80 Calvert microcalorimeter, revealing an endothermic dissolution process. Subsequently, the molar enthalpy of dissolution was determined, and kinetic equations describing the dissolution rate were derived for temperatures of 303.15, 308.15, 313.15, 318.15, and 323.15 K as follows: dα⁄dt = 10−2.46(1 − α)0.35, dα⁄dt = 10−2.19(1 − α)0.79, dα⁄dt = 10−1.76(1 − α)1.32, dα⁄dt = 10−1.86(1 − α)0.46, and dα⁄dt = 10−2.02(1 − α)0.70, respectively. Additionally, molecular dynamics (MD) simulations investigated the intermolecular interactions of the HMX/cyclopentanone cocrystallization process, demonstrating a transformation of HMX from β- to α-conformation within the cyclopentanone environment. Theoretical calculations performed at the ωB97XD/6-311G(d,p) level affirmed that α-HMX exhibited stronger binding affinity toward cyclopentanone compared to β-HMX, corroborating experimental findings. A comprehensive understanding of the dissolution behavior of HMX in cyclopentanone holds significant implications for crystal growth methodologies and cocrystallization processes. Such insights are pivotal for optimizing HMX dissolution processes and offer valuable perspectives for developing and designing advanced energetic materials.
HMX/Cyclopentanone 共晶体的制备、热行为和构象稳定性
通过控制冷却方法实现了 1,3,5,7-四硝基-1,3,5,7-四唑烷(HMX)与环戊酮的共晶体化,随后进行了综合表征,确认了共晶体中 HMX 的 α 构型。使用 C-80 卡尔弗特微量热仪在一定温度范围内评估了 HMX 在环戊酮中的溶解焓,结果表明这是一个内热溶解过程。随后,测定了摩尔溶解焓,并得出了温度为 303.15、308.15、313.15、318.15 和 323.15 K 时的溶解速率动力学方程,如下所示在 303.15、308.15、313.15、318.15 和 323.15 K 温度下的溶解速率动力学方程分别为:dα⁄dt = 10-2.46(1 - α)0.35、dα⁄dt = 10-2.19(1 - α)0.79、dα⁄dt = 10-1.76(1 - α)1.32、dα⁄dt = 10-1.86(1 - α)0.46 和 dα⁄dt = 10-2.02(1 - α)0.70。此外,分子动力学(MD)模拟研究了 HMX/环戊酮共晶过程中的分子间相互作用,结果表明 HMX 在环戊酮环境中发生了从β构象到α构象的转变。在 ωB97XD/6-311G(d,p) 水平上进行的理论计算证实,与 β-HMX 相比,α-HMX 与环戊酮的结合亲和力更强,这也证实了实验结果。全面了解 HMX 在环戊酮中的溶解行为对晶体生长方法和共晶过程具有重要意义。这些见解对于优化 HMX 溶解过程至关重要,并为开发和设计先进的高能材料提供了宝贵的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信