Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.06.606796
Lucas Stoffl, Andy Bonnetto, Stéphane d’Ascoli, Alexander Mathis
{"title":"Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders","authors":"Lucas Stoffl, Andy Bonnetto, Stéphane d’Ascoli, Alexander Mathis","doi":"10.1101/2024.08.06.606796","DOIUrl":null,"url":null,"abstract":"Natural behavior is hierarchical. Yet, there is a paucity of benchmarks addressing this aspect. Recognizing the scarcity of large-scale hierarchical behavioral benchmarks, we create a novel synthetic basketball playing benchmark (Shot7M2). Beyond synthetic data, we extend BABEL into a hierarchical action segmentation benchmark (hBABEL). Then, we develop a masked autoencoder framework (hBehaveMAE) to elucidate the hierarchical nature of motion capture data in an unsupervised fashion. We find that hBehaveMAE learns interpretable latents on Shot7M2 and hBABEL, where lower encoder levels show a superior ability to represent fine-grained movements, while higher encoder levels capture complex actions and activities. Additionally, we evaluate hBehaveMAE on MABe22, a representation learning benchmark with short and long-term behavioral states. hBehaveMAE achieves state-of-the-art performance without domain-specific feature extraction. Together, these components synergistically contribute towards unveiling the hierarchical organization of natural behavior. Models and benchmarks are available at https://github.com/amathislab/BehaveMAE.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"29 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural behavior is hierarchical. Yet, there is a paucity of benchmarks addressing this aspect. Recognizing the scarcity of large-scale hierarchical behavioral benchmarks, we create a novel synthetic basketball playing benchmark (Shot7M2). Beyond synthetic data, we extend BABEL into a hierarchical action segmentation benchmark (hBABEL). Then, we develop a masked autoencoder framework (hBehaveMAE) to elucidate the hierarchical nature of motion capture data in an unsupervised fashion. We find that hBehaveMAE learns interpretable latents on Shot7M2 and hBABEL, where lower encoder levels show a superior ability to represent fine-grained movements, while higher encoder levels capture complex actions and activities. Additionally, we evaluate hBehaveMAE on MABe22, a representation learning benchmark with short and long-term behavioral states. hBehaveMAE achieves state-of-the-art performance without domain-specific feature extraction. Together, these components synergistically contribute towards unveiling the hierarchical organization of natural behavior. Models and benchmarks are available at https://github.com/amathislab/BehaveMAE.
利用遮蔽式自动编码器阐明行为的层次性质
自然行为是分等级的。然而,针对这方面的基准却很少。认识到大规模分层行为基准的稀缺性,我们创建了一个新颖的合成篮球比赛基准(Shot7M2)。除了合成数据,我们还将 BABEL 扩展为分层动作分割基准(hBABEL)。然后,我们开发了一个掩码自动编码器框架(hBehaveMAE),以无监督的方式阐明动作捕捉数据的层次性。我们发现,hBehaveMAE 可以在 Shot7M2 和 hBABEL 上学习可解释的潜变量,其中较低的编码器级别在表示细粒度动作方面表现出卓越的能力,而较高的编码器级别则可以捕捉复杂的动作和活动。此外,我们还在具有短期和长期行为状态的表征学习基准 MABe22 上对 hBehaveMAE 进行了评估。这些组件的协同作用有助于揭示自然行为的层次组织。模型和基准可在 https://github.com/amathislab/BehaveMAE 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信