{"title":"Multi-objective topology optimization for materials with negative Poisson’s ratio and thermal insulation","authors":"Yi Wang, Yanding Guo, Tieqiang Gang, Lijie Chen","doi":"10.1007/s10999-024-09721-9","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal protection system (TPS) of spacecraft requires enhanced impact resistance and thermal insulation capability while pursuing higher stiffness. Considering this, a topology optimization method of periodic microstructures with negative Poisson’s ratio and insulation performance is proposed for the filling material design of the core layer in TPS, in which homogenization approach is adopted in calculating properties of microstructures and multi-objective optimization is used for balancing the mechanical and thermal properties of the optimized microstructures. Considering the optimization design of impact-resistant structures with negative Poisson’s ratio, a novel objective function is proposed to reduce the influence of iteration steps on the optimization results. For the topology optimization of insulation structures, a suitable objective function is selected by comparing the optimization results of two existing objectives. Based on the weighted linear combination, a multi-objective microstructural topology optimization method is proposed, simultaneously incorporating negative Poisson’s ratio and insulation performance. By adjusting the weighting coefficient of the objective functions, the microstructure of the materials can be designed according to different performance requirements. Several 2D and 3D optimized microstructures with both better impact resistance and insulation performance of TPS are successfully designed. In addition, the 2D optimized microstructures under different weights are assembled into sandwich structures, and the compression and heat conduction are simulated to further illustrates the validity and flexibility of the proposed method considering requirements of both impact-resistant and thermal insulation performances of sandwich structures.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 6","pages":"1251 - 1268"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09721-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal protection system (TPS) of spacecraft requires enhanced impact resistance and thermal insulation capability while pursuing higher stiffness. Considering this, a topology optimization method of periodic microstructures with negative Poisson’s ratio and insulation performance is proposed for the filling material design of the core layer in TPS, in which homogenization approach is adopted in calculating properties of microstructures and multi-objective optimization is used for balancing the mechanical and thermal properties of the optimized microstructures. Considering the optimization design of impact-resistant structures with negative Poisson’s ratio, a novel objective function is proposed to reduce the influence of iteration steps on the optimization results. For the topology optimization of insulation structures, a suitable objective function is selected by comparing the optimization results of two existing objectives. Based on the weighted linear combination, a multi-objective microstructural topology optimization method is proposed, simultaneously incorporating negative Poisson’s ratio and insulation performance. By adjusting the weighting coefficient of the objective functions, the microstructure of the materials can be designed according to different performance requirements. Several 2D and 3D optimized microstructures with both better impact resistance and insulation performance of TPS are successfully designed. In addition, the 2D optimized microstructures under different weights are assembled into sandwich structures, and the compression and heat conduction are simulated to further illustrates the validity and flexibility of the proposed method considering requirements of both impact-resistant and thermal insulation performances of sandwich structures.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.