{"title":"Design of Higher-Dimensional Switching Chaos Generators by Constructing a Closed Hyper-Polyhedron","authors":"Changchun Sun","doi":"10.1142/s0218127424501372","DOIUrl":null,"url":null,"abstract":"A novel and unified design approach on higher-dimensional switching chaos generators is derived in this paper. The whole [Formula: see text]-dimensional linear space is divided into two parts by a closed hyper-polyhedron. Two higher-dimensional linear systems with the simplest structures as switching chaos generators are designed successfully to generate chaos. State matrix of the first linear system is Hurwitz stable. State matrix of the second linear system is not Hurwitz stable. Chaotic dynamical behaviors take place due to switching two systems. The switching trajectories go through the boundary of the closed hyper-polyhedron endlessly. Moreover, the size of the hyper-polyhedron can determine and control the amplitude of the chaotic signals. Specific numerical examples on four-dimensional, five-dimensional and six-dimensional switching chaos generators are employed, respectively, to illustrate the effectiveness of the novel and advanced approach presented in this paper. The proposed approach can also be applied to designing other switching chaos generators with the higher dimension beyond six.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424501372","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel and unified design approach on higher-dimensional switching chaos generators is derived in this paper. The whole [Formula: see text]-dimensional linear space is divided into two parts by a closed hyper-polyhedron. Two higher-dimensional linear systems with the simplest structures as switching chaos generators are designed successfully to generate chaos. State matrix of the first linear system is Hurwitz stable. State matrix of the second linear system is not Hurwitz stable. Chaotic dynamical behaviors take place due to switching two systems. The switching trajectories go through the boundary of the closed hyper-polyhedron endlessly. Moreover, the size of the hyper-polyhedron can determine and control the amplitude of the chaotic signals. Specific numerical examples on four-dimensional, five-dimensional and six-dimensional switching chaos generators are employed, respectively, to illustrate the effectiveness of the novel and advanced approach presented in this paper. The proposed approach can also be applied to designing other switching chaos generators with the higher dimension beyond six.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.