Giriraj Sahu, Dylan Greening, Wilten Nicola, Ray W. Turner
{"title":"Ion channels that mediate calcium-dependent control of spike patterns are spatially organized across the soma in relation to a cytoskeletal assembly","authors":"Giriraj Sahu, Dylan Greening, Wilten Nicola, Ray W. Turner","doi":"10.1101/2024.08.08.607230","DOIUrl":null,"url":null,"abstract":"Sodium and potassium channels that regulate axonal spike propagation are highly organized at nodes of Ranvier by a spectrin-actin membrane periodic skeleton. STORM-TIRF microscopy was used to define the spatial organization over the soma of a complex of Cav1.3 calcium, RyR2, and IK potassium channels (CaRyK complex) that generate a slow AHP in hippocampal neurons. Nearest neighbor distance and non-negative matrix factorization analyses identified two spatial patterns as linear rows of 3-8 immuno-labeled clusters with 155 nm periodicity that extended to branchpoints, or as isolated clusters with 600-800 nm separation. The rows and isolated clusters for each of the CaRyK complex proteins closely overlapped with the patterns for spectrin βII and the actin linking proteins actinin I and II. Together the data reveal a close correspondence between the placement of CaRyK complex proteins and that of a net-like organization of spectrin βII across the soma. The regularity in the pattern of expression of these proteins at ER-PM junctions suggest their role as functional nodes of calcium- and calcium-gated potassium channels to control the pattern of spike output at the soma.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.607230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium and potassium channels that regulate axonal spike propagation are highly organized at nodes of Ranvier by a spectrin-actin membrane periodic skeleton. STORM-TIRF microscopy was used to define the spatial organization over the soma of a complex of Cav1.3 calcium, RyR2, and IK potassium channels (CaRyK complex) that generate a slow AHP in hippocampal neurons. Nearest neighbor distance and non-negative matrix factorization analyses identified two spatial patterns as linear rows of 3-8 immuno-labeled clusters with 155 nm periodicity that extended to branchpoints, or as isolated clusters with 600-800 nm separation. The rows and isolated clusters for each of the CaRyK complex proteins closely overlapped with the patterns for spectrin βII and the actin linking proteins actinin I and II. Together the data reveal a close correspondence between the placement of CaRyK complex proteins and that of a net-like organization of spectrin βII across the soma. The regularity in the pattern of expression of these proteins at ER-PM junctions suggest their role as functional nodes of calcium- and calcium-gated potassium channels to control the pattern of spike output at the soma.