Neuropeptide oxytocin facilitates its own brain-to-periphery uptake by regulating blood flow dynamics and permeability

bioRxiv Pub Date : 2024-08-09 DOI:10.1101/2024.08.07.606980
Preethi Rajamannar, O. Raz, G. Levkowitz
{"title":"Neuropeptide oxytocin facilitates its own brain-to-periphery uptake by regulating blood flow dynamics and permeability","authors":"Preethi Rajamannar, O. Raz, G. Levkowitz","doi":"10.1101/2024.08.07.606980","DOIUrl":null,"url":null,"abstract":"The hypothalamo-neurohypophyseal system is an important neuroendocrine brain-to-blood conduit through which the neurohormones oxytocin and arginine-vasopressin are released from the brain into the general circulation to affect peripheral physiological functions such as salt balance, metabolism and reproduction. However, whether an active mechanism executes fast and efficient neurohormone release to the periphery remains unsolved. We show that a hyperosmotic physiological challenge elicits a local increase in neurohypophyseal blood flow velocities and a change in capillary diameter, which is dictated by the geometry of the hypophyseal vascular microcircuit. Genetic ablation of oxytocin neurons and inhibition of oxytocin receptor signaling attenuated capillary blood flow and diameter. Optogenetic stimulation of oxytocin neurons resulted in an oxytocin receptor-dependent increase in blood flow velocities. Lastly, both osmotic challenge and oxytocin neuronal activation elicited a local rise in neurohypophyseal capillary permeability in an oxytocin signaling-dependent manner. Our study demonstrates that physiologically elicited changes in neurohypophyseal blood flow and permeability are regulated by oxytocin. We propose that oxytocin-dependent neuro-vascular coupling facilitates its efficient uptake into the blood circulation, suggesting a self-perpetuating mechanism of peripheral hormone transfer.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.606980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hypothalamo-neurohypophyseal system is an important neuroendocrine brain-to-blood conduit through which the neurohormones oxytocin and arginine-vasopressin are released from the brain into the general circulation to affect peripheral physiological functions such as salt balance, metabolism and reproduction. However, whether an active mechanism executes fast and efficient neurohormone release to the periphery remains unsolved. We show that a hyperosmotic physiological challenge elicits a local increase in neurohypophyseal blood flow velocities and a change in capillary diameter, which is dictated by the geometry of the hypophyseal vascular microcircuit. Genetic ablation of oxytocin neurons and inhibition of oxytocin receptor signaling attenuated capillary blood flow and diameter. Optogenetic stimulation of oxytocin neurons resulted in an oxytocin receptor-dependent increase in blood flow velocities. Lastly, both osmotic challenge and oxytocin neuronal activation elicited a local rise in neurohypophyseal capillary permeability in an oxytocin signaling-dependent manner. Our study demonstrates that physiologically elicited changes in neurohypophyseal blood flow and permeability are regulated by oxytocin. We propose that oxytocin-dependent neuro-vascular coupling facilitates its efficient uptake into the blood circulation, suggesting a self-perpetuating mechanism of peripheral hormone transfer.
神经肽催产素通过调节血流动力学和渗透性促进自身从大脑到外周的吸收
下丘脑-神经叶系统是大脑到血液的重要神经内分泌通道,催产素和精氨酸加压素等神经激素通过该通道从大脑释放到血液循环中,影响盐平衡、新陈代谢和生殖等外周生理功能。然而,是否有一种主动机制能快速有效地向外周释放神经激素,这个问题仍未解决。我们的研究表明,高渗透性生理挑战会引起神经叶下血流速度的局部增加和毛细血管直径的变化,而这是由神经叶下血管微循环的几何形状决定的。基因消减催产素神经元和抑制催产素受体信号传导会减弱毛细血管的血流量和直径。对催产素神经元的光遗传刺激会导致催产素受体依赖性的血流速度增加。最后,渗透压挑战和催产素神经元激活都会以催产素信号依赖的方式引起局部神经叶毛细血管通透性的上升。我们的研究表明,生理上引起的神经叶血流和通透性变化受催产素调节。我们认为,催产素依赖的神经-血管耦合促进了催产素被血液循环的有效吸收,这表明了外周激素转移的自我持续机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信