A generalized Allen–Cahn model with mass source and its Cahn–Hilliard limit

Wei Shi, Xinbo Yang, Lubin Cui, Alain Miranville
{"title":"A generalized Allen–Cahn model with mass source and its Cahn–Hilliard limit","authors":"Wei Shi, Xinbo Yang, Lubin Cui, Alain Miranville","doi":"10.1002/zamm.202301026","DOIUrl":null,"url":null,"abstract":"The present paper is concerned with a fourth‐order Allen–Cahn model with logarithmic potential and mass source that describes the process of phase separation in two‐component systems accompanied by a flux of material. The existence of a global weak solution is obtained under appropriate hypotheses on the source term. Furthermore, we study its Cahn–Hilliard limit as a small parameter goes to zero. The main difficulty in the mathematical analysis of the model lies in the presence of the source term that leads to the nonconservation of mass, contrary to the original Cahn–Hilliard theory.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":"28 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202301026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is concerned with a fourth‐order Allen–Cahn model with logarithmic potential and mass source that describes the process of phase separation in two‐component systems accompanied by a flux of material. The existence of a global weak solution is obtained under appropriate hypotheses on the source term. Furthermore, we study its Cahn–Hilliard limit as a small parameter goes to zero. The main difficulty in the mathematical analysis of the model lies in the presence of the source term that leads to the nonconservation of mass, contrary to the original Cahn–Hilliard theory.
带质量源的广义艾伦-卡恩模型及其卡恩-希利亚德极限
本文研究的是具有对数势能和质量源的四阶 Allen-Cahn 模型,该模型描述了双组分系统中伴随物质流的相分离过程。在源项的适当假设下,我们得到了全局弱解的存在。此外,我们还研究了当一个小参数归零时的卡恩-希利亚德极限。模型数学分析的主要困难在于源项的存在导致质量不守恒,这与最初的卡恩-希利亚德理论相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信