Q-switched and mode-locked pulsed laser with mechanically exfoliated V2ZnC MAX saturable absorber in erbium-doped all-fibre laser

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Kawther M. Musthafa, Azura Hamzah, Ooi Wei Ling, Ahmad Haziq Aiman Rosol, Norliza Mohamed, Sulaiman Wadi Harun
{"title":"Q-switched and mode-locked pulsed laser with mechanically exfoliated V2ZnC MAX saturable absorber in erbium-doped all-fibre laser","authors":"Kawther M. Musthafa,&nbsp;Azura Hamzah,&nbsp;Ooi Wei Ling,&nbsp;Ahmad Haziq Aiman Rosol,&nbsp;Norliza Mohamed,&nbsp;Sulaiman Wadi Harun","doi":"10.1007/s12648-024-03313-1","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers have proposed diverse techniques for fabricating saturable absorbers, including aqueous acid exfoliation, evanescent coupling, and electrochemical exfoliation, with fabrication complexity and limitations that reduce saturable absorber performance and application range. We describe mechanical exfoliation and transfer as an efficient and straightforward mechanism for a MAX phase nanomaterial, <i>V</i><sub><i>2</i></sub><i>ZnC</i>, expelled into a 48.926 µm thin saturable absorber film for passively Q-switched and mode-locked all-fibre lasers, exhibiting a modulation depth of 13.16%, non-saturable absorption to be 10.21%, and saturation intensity of 4.32 kW/cm<sup>2</sup> MAX-SA; all of which demonstrated its superiority with a self-starting laser. The output laser was stable with a pulse width of 7.160 µs and a repetition rate of up to 62.23 kHz at a threshold pump power of 59.53 mW in Q-switched conditions and 346.8 ns pulse width with 963.3 kHz repetition rate at a pump power of 80.41 mW in mode-locked conditions. It is a excellent saturable absorber for the use of pulse laser production in all-fibre laser cavities because of its simple manufacturing process and outstanding optical, physical, thermal, and mechanical qualities.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 2","pages":"705 - 714"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-024-03313-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have proposed diverse techniques for fabricating saturable absorbers, including aqueous acid exfoliation, evanescent coupling, and electrochemical exfoliation, with fabrication complexity and limitations that reduce saturable absorber performance and application range. We describe mechanical exfoliation and transfer as an efficient and straightforward mechanism for a MAX phase nanomaterial, V2ZnC, expelled into a 48.926 µm thin saturable absorber film for passively Q-switched and mode-locked all-fibre lasers, exhibiting a modulation depth of 13.16%, non-saturable absorption to be 10.21%, and saturation intensity of 4.32 kW/cm2 MAX-SA; all of which demonstrated its superiority with a self-starting laser. The output laser was stable with a pulse width of 7.160 µs and a repetition rate of up to 62.23 kHz at a threshold pump power of 59.53 mW in Q-switched conditions and 346.8 ns pulse width with 963.3 kHz repetition rate at a pump power of 80.41 mW in mode-locked conditions. It is a excellent saturable absorber for the use of pulse laser production in all-fibre laser cavities because of its simple manufacturing process and outstanding optical, physical, thermal, and mechanical qualities.

Abstract Image

在掺铒全光纤激光器中使用机械剥离 V2ZnC MAX 可饱和吸收体的 Q 值开关和模式锁定脉冲激光器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信