Positive-Unlabeled Learning Method for Positive Emotion Recognition Using EEG technology

Zizhu Li, Chengyuan Shen, Jianting Cao
{"title":"Positive-Unlabeled Learning Method for Positive Emotion Recognition Using EEG technology","authors":"Zizhu Li, Chengyuan Shen, Jianting Cao","doi":"10.24297/ijct.v24i.9650","DOIUrl":null,"url":null,"abstract":"Emotion is a reaction of the human brain to external events, and the study of emotion recognition has substantial practical applications. Therefore, accurately recognizing and understanding positive emotions across different populations is crucial. Traditional image recognition technology cannot effectively identify emotions in individuals with impaired facial muscle control, such as elderly people in nursing homes with Alzheimer’s disease and patients with facial nerve paralysis (Bell’s palsy). Consequently, many machine learning methods have been widely applied to emotion recognition based on electroencephalogram (EEG) signals in recent years. In cases where the number of samples is sufficient, powerful deep learning methods can achieve high performance in emotion recognition. However, obtaining a large amount of reliably labeled emotional EEG data is arduous. We introduce a Positive-Unlabeled (PU) learning method for classifying EEG signals into Positive and Non-Positive emotions using a binary classifier developed with minimal labeled data. This approach utilizes a small volume of labeled data containing only positive emotion signals, combined with unlabeled data that includes both classes, effectively reducing the dependency on extensive, reliably labeled EEG data. The best accuracy achieved by this method is 93.95%. Experimental results on the dataset demonstrate theeffectiveness of our approach.","PeriodicalId":210853,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"41 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/ijct.v24i.9650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion is a reaction of the human brain to external events, and the study of emotion recognition has substantial practical applications. Therefore, accurately recognizing and understanding positive emotions across different populations is crucial. Traditional image recognition technology cannot effectively identify emotions in individuals with impaired facial muscle control, such as elderly people in nursing homes with Alzheimer’s disease and patients with facial nerve paralysis (Bell’s palsy). Consequently, many machine learning methods have been widely applied to emotion recognition based on electroencephalogram (EEG) signals in recent years. In cases where the number of samples is sufficient, powerful deep learning methods can achieve high performance in emotion recognition. However, obtaining a large amount of reliably labeled emotional EEG data is arduous. We introduce a Positive-Unlabeled (PU) learning method for classifying EEG signals into Positive and Non-Positive emotions using a binary classifier developed with minimal labeled data. This approach utilizes a small volume of labeled data containing only positive emotion signals, combined with unlabeled data that includes both classes, effectively reducing the dependency on extensive, reliably labeled EEG data. The best accuracy achieved by this method is 93.95%. Experimental results on the dataset demonstrate theeffectiveness of our approach.
利用脑电图技术识别积极情绪的积极无标记学习法
情绪是人脑对外部事件的一种反应,而情绪识别研究具有重要的实际应用价值。因此,准确识别和理解不同人群的积极情绪至关重要。传统的图像识别技术无法有效识别面部肌肉控制能力受损的人的情绪,如养老院中患有阿尔茨海默病的老人和面部神经麻痹(贝尔氏麻痹)患者。因此,近年来许多机器学习方法被广泛应用于基于脑电图(EEG)信号的情绪识别。在样本数量充足的情况下,功能强大的深度学习方法可以在情感识别中取得很高的性能。然而,要获得大量可靠标记的情感脑电图数据却非常困难。我们引入了一种正向无标记(PU)学习方法,利用使用最少标记数据开发的二元分类器将脑电信号分为正向情绪和非正向情绪。这种方法利用了少量仅包含积极情绪信号的标注数据,并结合了包含两个类别的非标注数据,有效降低了对大量可靠标注脑电图数据的依赖。该方法达到的最佳准确率为 93.95%。数据集上的实验结果证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信