Deep Learning-Based Monocular Estimation of Distance and Height for Edge Devices

Information Pub Date : 2024-08-09 DOI:10.3390/info15080474
Jan Gasienica-Józkowy, Bogusław Cyganek, Mateusz Knapik, Szymon Glogowski, Łukasz Przebinda
{"title":"Deep Learning-Based Monocular Estimation of Distance and Height for Edge Devices","authors":"Jan Gasienica-Józkowy, Bogusław Cyganek, Mateusz Knapik, Szymon Glogowski, Łukasz Przebinda","doi":"10.3390/info15080474","DOIUrl":null,"url":null,"abstract":"Accurately estimating the absolute distance and height of objects in open areas is quite challenging, especially when based solely on single images. In this paper, we tackle these issues and propose a new method that blends traditional computer vision techniques with advanced neural network-based solutions. Our approach combines object detection and segmentation, monocular depth estimation, and homography-based mapping to provide precise and efficient measurements of absolute height and distance. This solution is implemented on an edge device, allowing for real-time data processing using both visual and thermal data sources. Experimental tests on a height estimation dataset we created show an accuracy of 98.86%, confirming the effectiveness of our method.","PeriodicalId":510156,"journal":{"name":"Information","volume":"69 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15080474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately estimating the absolute distance and height of objects in open areas is quite challenging, especially when based solely on single images. In this paper, we tackle these issues and propose a new method that blends traditional computer vision techniques with advanced neural network-based solutions. Our approach combines object detection and segmentation, monocular depth estimation, and homography-based mapping to provide precise and efficient measurements of absolute height and distance. This solution is implemented on an edge device, allowing for real-time data processing using both visual and thermal data sources. Experimental tests on a height estimation dataset we created show an accuracy of 98.86%, confirming the effectiveness of our method.
基于深度学习的边缘设备单目距离和高度估计
在开阔区域准确估计物体的绝对距离和高度是一项相当具有挑战性的工作,尤其是在仅基于单张图像的情况下。在本文中,我们针对这些问题,提出了一种将传统计算机视觉技术与先进的神经网络解决方案相结合的新方法。我们的方法结合了物体检测和分割、单目深度估算和基于同构的映射,可提供精确、高效的绝对高度和距离测量。该解决方案在边缘设备上实现,允许使用视觉和热数据源进行实时数据处理。在我们创建的高度估算数据集上进行的实验测试表明,准确率达到 98.86%,证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信