Existence, uniqueness and  L2 t (Hx2) ∩ L∞ t  (Hx1) ∩ Ht1(L2 x ) regularity of the gradient flow of the Ambrosio-Tortorelli functional

Tommaso Cortopassi
{"title":"Existence, uniqueness and  L2 t (Hx2) ∩ L∞ t  (Hx1) ∩ Ht1(L2 x ) regularity of the gradient flow of the Ambrosio-Tortorelli functional","authors":"Tommaso Cortopassi","doi":"10.1051/cocv/2024060","DOIUrl":null,"url":null,"abstract":"We consider the gradient flow of the Ambrosio-Tortorelli functional, proving existence, uniqueness and L2t (Hx2) ∩ L∞t (Hx1) ∩ Ht1(L2x) regularity of the solution in dimension 2. Such functional is an approximation in Γ-convergence of the Mumford-Shah functional often used in problems of image segmentation and fracture mechanics. The strategy of the proof essentially follows the one of [9] but the crucial estimate is attained employing a different technique, and in the end it allows us to prove better estimates than the ones obtained in [9]. In particular we prove that if U ⊂ R2 is a bounded Lipshitz domain, the initial data (u0,z0) ∈ [H1(U)]2 and 0 ≤ z0 ≤ 1, then for every T > 0 there exists a unique gradient flow (u(t),z(t)) of the Ambrosio-Tortorelli functional such that\n(u,z) ∈ [L2(0,T;H2(U)) ∩ L∞(0,T;H1(U)) ∩ H1(0,T;L2(U))]2, while previously such regularity was known only for short times.","PeriodicalId":512605,"journal":{"name":"ESAIM: Control, Optimisation and Calculus of Variations","volume":"81 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Control, Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2024060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the gradient flow of the Ambrosio-Tortorelli functional, proving existence, uniqueness and L2t (Hx2) ∩ L∞t (Hx1) ∩ Ht1(L2x) regularity of the solution in dimension 2. Such functional is an approximation in Γ-convergence of the Mumford-Shah functional often used in problems of image segmentation and fracture mechanics. The strategy of the proof essentially follows the one of [9] but the crucial estimate is attained employing a different technique, and in the end it allows us to prove better estimates than the ones obtained in [9]. In particular we prove that if U ⊂ R2 is a bounded Lipshitz domain, the initial data (u0,z0) ∈ [H1(U)]2 and 0 ≤ z0 ≤ 1, then for every T > 0 there exists a unique gradient flow (u(t),z(t)) of the Ambrosio-Tortorelli functional such that (u,z) ∈ [L2(0,T;H2(U)) ∩ L∞(0,T;H1(U)) ∩ H1(0,T;L2(U))]2, while previously such regularity was known only for short times.
安布罗西奥-托托雷利函数梯度流的存在性、唯一性和 L2 t (Hx2) ∩ L∞ t (Hx1) ∩ Ht1(L2 x ) 正则性
我们考虑了 Ambrosio-Tortorelli 函数的梯度流,证明了解在维 2 中的存在性、唯一性和 L2t (Hx2) ∩ L∞t (Hx1) ∩ Ht1(L2x) 正则性。该函数是图像分割和断裂力学问题中常用的芒福德-沙函数的Γ-收敛近似值。证明的策略基本上沿用了 [9] 的策略,但关键的估计值是用不同的技术获得的,最终它让我们证明了比 [9] 获得的估计值更好的估计值。我们特别证明,如果 U ⊂ R2 是一个有界的 Lipshitz 域,初始数据 (u0,z0) ∈ [H1(U)]2 且 0 ≤ z0 ≤ 1,那么对于每一个 T > 0,都存在一个唯一的安布罗西奥-托托雷利函数梯度流 (u(t),z(t)),使得(u,z) ∈ [L2(0,T. H2(U)) ∩];H2(U))∩L∞(0,T;H1(U))∩H1(0,T;L2(U))]2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信