Paulina Sokołowska, Anna Wiktorowska-Owczarek, Jakub Tambor, Sebastian Gawlak-Socka, Edward Kowalczyk, M. Jóźwiak-Bębenista
{"title":"Endoplasmic Reticulum Stress Differently Modulates the Release of IL-6 and IL-8 Cytokines in Human Glial Cells","authors":"Paulina Sokołowska, Anna Wiktorowska-Owczarek, Jakub Tambor, Sebastian Gawlak-Socka, Edward Kowalczyk, M. Jóźwiak-Bębenista","doi":"10.3390/ijms25168687","DOIUrl":null,"url":null,"abstract":"Endoplasmic reticulum (ER) stress is a significant player in the pathophysiology of various neurodegenerative and neuropsychiatric disorders. Despite the established link between ER stress and inflammatory pathways, there remains a need for deeper exploration of the specific cellular mechanisms underlying ER stress-mediated neuroinflammation. This study aimed to investigate how the severity of ER stress (triggered by different concentrations of tunicamycin) can impact the release of proinflammatory cytokines IL-6 and IL-8 from astrocytes and microglia, comparing the effects with those induced by well-known immunostimulants—tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). Mild ER stress has a distinct effect on the cytokine release compared to more intense stress levels, i.e., diminished IL-6 production was accompanied by an increase in IL-8 level, which was significantly more pronounced in astrocytes than in microglia. On the contrary, prolonged or more severe ER stress induced inflammation in glial cells, leading to a time- and concentration-dependent buildup of proinflammatory IL-6, but unlike inflammatory agents, an ER stress inducer diminished IL-8 secretions by glial cells. The differences could hold importance in identifying ER stress markers as potential drug targets for the treatment of neurodegenerative diseases or mood disorders, yet this requires confirmation in more complex animal studies.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"71 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168687","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Endoplasmic reticulum (ER) stress is a significant player in the pathophysiology of various neurodegenerative and neuropsychiatric disorders. Despite the established link between ER stress and inflammatory pathways, there remains a need for deeper exploration of the specific cellular mechanisms underlying ER stress-mediated neuroinflammation. This study aimed to investigate how the severity of ER stress (triggered by different concentrations of tunicamycin) can impact the release of proinflammatory cytokines IL-6 and IL-8 from astrocytes and microglia, comparing the effects with those induced by well-known immunostimulants—tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). Mild ER stress has a distinct effect on the cytokine release compared to more intense stress levels, i.e., diminished IL-6 production was accompanied by an increase in IL-8 level, which was significantly more pronounced in astrocytes than in microglia. On the contrary, prolonged or more severe ER stress induced inflammation in glial cells, leading to a time- and concentration-dependent buildup of proinflammatory IL-6, but unlike inflammatory agents, an ER stress inducer diminished IL-8 secretions by glial cells. The differences could hold importance in identifying ER stress markers as potential drug targets for the treatment of neurodegenerative diseases or mood disorders, yet this requires confirmation in more complex animal studies.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.