Regularization and Propagation in a Hamilton–Jacobi–Bellman-Type Equation in Infinite-Dimensional Hilbert Space

Symmetry Pub Date : 2024-08-09 DOI:10.3390/sym16081017
Carlo Bianca, C. Dogbé
{"title":"Regularization and Propagation in a Hamilton–Jacobi–Bellman-Type Equation in Infinite-Dimensional Hilbert Space","authors":"Carlo Bianca, C. Dogbé","doi":"10.3390/sym16081017","DOIUrl":null,"url":null,"abstract":"This paper is devoted to new propagation and regularity results for a class of first-order Hamilton–Jacobi–Bellman-type problems in a separable infinite-dimensional Hilbert space. Specifically, the related Cauchy problem is investigated by employing the Faedo–Galerkin approximation method. Under some structural assumptions, the main result is obtained by using the probabilistic representation formula of the solution in order to define the weak continuity assumptions, by assuming the existence of a symmetric positive definite Hilbert–Schmidt operator and by employing modulus continuity arguments.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16081017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to new propagation and regularity results for a class of first-order Hamilton–Jacobi–Bellman-type problems in a separable infinite-dimensional Hilbert space. Specifically, the related Cauchy problem is investigated by employing the Faedo–Galerkin approximation method. Under some structural assumptions, the main result is obtained by using the probabilistic representation formula of the solution in order to define the weak continuity assumptions, by assuming the existence of a symmetric positive definite Hilbert–Schmidt operator and by employing modulus continuity arguments.
无穷维希尔伯特空间中汉密尔顿-雅各比-贝尔曼方程的正则化与传播
本文致力于研究可分离无限维希尔伯特空间中一类一阶汉密尔顿-雅各比-贝尔曼(Hamilton-Jacobi-Bellman)型问题的新传播和正则性结果。具体而言,本文采用 Faedo-Galerkin 近似方法研究了相关的 Cauchy 问题。在一些结构假设下,通过使用解的概率表示公式来定义弱连续性假设,通过假设对称正定希尔伯特-施密特算子的存在,以及通过使用模连续性论证,得到了主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信