Liquidity forecasting at corporate and subsidiary levels using machine learning

Q1 Economics, Econometrics and Finance
Vinay Singh, Bhasker Choubey, Stephan Sauer
{"title":"Liquidity forecasting at corporate and subsidiary levels using machine learning","authors":"Vinay Singh,&nbsp;Bhasker Choubey,&nbsp;Stephan Sauer","doi":"10.1002/isaf.1565","DOIUrl":null,"url":null,"abstract":"<p>Liquidity planning and forecasting are essential activities in corporate financial planning team. Traditionally, empirical models and techniques based on in-house expertise have been used to navigate the numerous challenges of this forecasting activity. These challenges become more complex when the forecasting activities are extended to subsidiaries of a large firm. This paper presents a structured approach that utilizes 240 covariates to predict net liquidity, customer receipts, and payments to suppliers to improve the accuracy and efficiency of liquidity forecasting in subsidiaries and at the corporate level. The approach is empirically validated on a large corporation headquartered in Germany, with average annual revenue from 6 to 7 billion Euro spanning 80 countries. The proposed approach demonstrated superior performance over existing methods in six out of nine forecasts using the data from 2014 to 2018. These findings suggest that a firm's classical approach to liquidity forecasting can be effectively challenged and outperformed by the algorithmic approach.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Liquidity planning and forecasting are essential activities in corporate financial planning team. Traditionally, empirical models and techniques based on in-house expertise have been used to navigate the numerous challenges of this forecasting activity. These challenges become more complex when the forecasting activities are extended to subsidiaries of a large firm. This paper presents a structured approach that utilizes 240 covariates to predict net liquidity, customer receipts, and payments to suppliers to improve the accuracy and efficiency of liquidity forecasting in subsidiaries and at the corporate level. The approach is empirically validated on a large corporation headquartered in Germany, with average annual revenue from 6 to 7 billion Euro spanning 80 countries. The proposed approach demonstrated superior performance over existing methods in six out of nine forecasts using the data from 2014 to 2018. These findings suggest that a firm's classical approach to liquidity forecasting can be effectively challenged and outperformed by the algorithmic approach.

Abstract Image

利用机器学习在公司和子公司层面进行流动性预测
流动性规划和预测是企业财务规划团队的基本活动。传统上,人们使用基于内部专业知识的经验模型和技术来应对这一预测活动中的诸多挑战。当预测活动扩展到大型企业的子公司时,这些挑战就变得更加复杂。本文提出了一种结构化方法,利用 240 个协变量来预测流动性净额、客户收款和供应商付款,以提高子公司和公司层面流动性预测的准确性和效率。该方法在一家总部位于德国的大型企业中进行了实证验证,该企业年均收入在 60 至 70 亿欧元之间,业务遍及 80 个国家。在使用 2014 年至 2018 年数据进行的九次预测中,所提出的方法在六次预测中表现出优于现有方法的性能。这些研究结果表明,公司的经典流动性预测方法可以受到算法方法的有效挑战,并且表现优于算法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信