A principled approach to community detection in interareal cortical networks

bioRxiv Pub Date : 2024-08-09 DOI:10.1101/2024.08.07.606907
Jorge Martinez Armas, Kenneth Knoblauch, H. Kennedy, Zoltan Toroczkai
{"title":"A principled approach to community detection in interareal cortical networks","authors":"Jorge Martinez Armas, Kenneth Knoblauch, H. Kennedy, Zoltan Toroczkai","doi":"10.1101/2024.08.07.606907","DOIUrl":null,"url":null,"abstract":"Structural connectivity between cortical areas, as revealed by tract-tracing is in the form of highly dense, weighted, directed, and spatially embedded complex networks. Extracting the community structure of these networks and aligning them with brain function is challenging, as most methods use local density measures, best suited for sparse graphs. Here we introduce a principled approach, based on distinguishability of connectivity profiles using the Hellinger distance, which is relatable to function. Applying it to tract-tracing data in the macaque, we show that the cortex at the interareal level is organized into a hierarchy of link-communities alongside with a node-community hierarchy. We find that the ½-Rényi divergence of connection profiles, a non-linear transform of the Hellinger metric, follows a Weibull-like distribution and scales linearly with the interareal distances, a quantitative expression between functional organization and cortical geometry. We discuss the relationship with the extensively studied SLN-based hierarchy.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.606907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural connectivity between cortical areas, as revealed by tract-tracing is in the form of highly dense, weighted, directed, and spatially embedded complex networks. Extracting the community structure of these networks and aligning them with brain function is challenging, as most methods use local density measures, best suited for sparse graphs. Here we introduce a principled approach, based on distinguishability of connectivity profiles using the Hellinger distance, which is relatable to function. Applying it to tract-tracing data in the macaque, we show that the cortex at the interareal level is organized into a hierarchy of link-communities alongside with a node-community hierarchy. We find that the ½-Rényi divergence of connection profiles, a non-linear transform of the Hellinger metric, follows a Weibull-like distribution and scales linearly with the interareal distances, a quantitative expression between functional organization and cortical geometry. We discuss the relationship with the extensively studied SLN-based hierarchy.
在大脑皮层间网络中进行群落检测的原则性方法
皮层区域之间的结构连通性是由神经束追踪所揭示的,其形式是高度密集、加权、有向和空间嵌入的复杂网络。提取这些网络的群落结构并将其与大脑功能相匹配具有挑战性,因为大多数方法都使用最适合稀疏图的局部密度测量方法。在此,我们介绍一种基于海灵格距离的连通性剖面可区分性的原则性方法,该方法与功能相关。将该方法应用于猕猴的神经束追踪数据,我们发现大脑皮层在区域间水平上被组织成一个链接-群落层次结构,以及一个节点-群落层次结构。我们发现,连接剖面的 ½-Rényi 发散是海灵格度量的非线性变换,它遵循类似魏布尔的分布,并与areal间距离成线性比例,是功能组织和皮层几何之间的定量表达。我们讨论了与广泛研究的基于 SLN 的层次结构之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信