{"title":"High Peak Power Ho : YLF Amplifier at 2.05 μm Seeded by an Electro-Optically Diode-Pumped Ho :GdVO4 Laser","authors":"Wantian Dai, Tongyu Liu, Yu Ding, Mengmeng Yan, Yongning Zhang, Yuwei Zhao","doi":"10.1007/s10946-024-10214-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a high peak power Ho :YLF amplifier seeded by an electro-optically diodepumped Ho :GdVO<sub>4</sub> laser operating at 2.05 μm. The diode-pumped Ho :GdVO<sub>4</sub> laser, operating under a continuous-wave (CW) regime, achieved an output power of 7.1 W at an absorbed pump power of 28 W, resulting in a slope efficiency of 41.4%. At a repetition rate of 1 kHz, the laser delivered an average output power of 3.6 W with a pulse width of 4.3 ns. By utilizing a Ho :YLF crystal as the amplification medium, with a seed power of 3 W and an incident pump power of 22.5 W, the amplifier generates an average output power of 15.5 W with a pulse width of 4.5 ns. We calculate the maximum pulse energy and peak power to be 15.5 mJ and 3.4 MW, respectively.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"45 3","pages":"295 - 299"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10214-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present a high peak power Ho :YLF amplifier seeded by an electro-optically diodepumped Ho :GdVO4 laser operating at 2.05 μm. The diode-pumped Ho :GdVO4 laser, operating under a continuous-wave (CW) regime, achieved an output power of 7.1 W at an absorbed pump power of 28 W, resulting in a slope efficiency of 41.4%. At a repetition rate of 1 kHz, the laser delivered an average output power of 3.6 W with a pulse width of 4.3 ns. By utilizing a Ho :YLF crystal as the amplification medium, with a seed power of 3 W and an incident pump power of 22.5 W, the amplifier generates an average output power of 15.5 W with a pulse width of 4.5 ns. We calculate the maximum pulse energy and peak power to be 15.5 mJ and 3.4 MW, respectively.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.