Chinaecherem Tochukwu Arum, Simon Bbumba, Moses Kigozi, Ibrahim Karume, Maximillian Kato, H. K. Nsamba, Ivan Kiganda, Muhammad Ntale
{"title":"Synthesis of Novel Perovskite-organic Hybrid Materials for High-efficiency Photovoltaic Devices","authors":"Chinaecherem Tochukwu Arum, Simon Bbumba, Moses Kigozi, Ibrahim Karume, Maximillian Kato, H. K. Nsamba, Ivan Kiganda, Muhammad Ntale","doi":"10.9734/ajacr/2024/v15i5299","DOIUrl":null,"url":null,"abstract":"Herein, we reviewed the synthesis methods of perovskite organic hybrid materials for high-efficiency photovoltaic devices. Perovskite material has a chemical structure of ABX3 that resembles that of CaTiO3. In this type of material, A is an organic cation, B represents a metal cation species, and X represents a halide ion. The devices are widely applied due to a number of factors such as long charge carrier diffusion lifetimes and length, high absorption coefficients, and good optical absorption band edge. The power conversion efficiency of the perovskite organic-inorganic hybrid is about 25 %, which illustrates the rapid increase and the need for commercialization. To improve the performance of the perovskite materials, synthesis techniques such as solid phase synthesis, as well as gas phase synthesis, and liquid phase synthesis are applied. The X-ray diffraction technique is discussed as a tool for crystal structure determination of the materials, as well as scanning electron microscopy for morphology. This review summarizes the common synthesis techniques for perovskite solar cells and how the morphology and structural properties influence device performance.","PeriodicalId":8480,"journal":{"name":"Asian Journal of Applied Chemistry Research","volume":"12 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajacr/2024/v15i5299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we reviewed the synthesis methods of perovskite organic hybrid materials for high-efficiency photovoltaic devices. Perovskite material has a chemical structure of ABX3 that resembles that of CaTiO3. In this type of material, A is an organic cation, B represents a metal cation species, and X represents a halide ion. The devices are widely applied due to a number of factors such as long charge carrier diffusion lifetimes and length, high absorption coefficients, and good optical absorption band edge. The power conversion efficiency of the perovskite organic-inorganic hybrid is about 25 %, which illustrates the rapid increase and the need for commercialization. To improve the performance of the perovskite materials, synthesis techniques such as solid phase synthesis, as well as gas phase synthesis, and liquid phase synthesis are applied. The X-ray diffraction technique is discussed as a tool for crystal structure determination of the materials, as well as scanning electron microscopy for morphology. This review summarizes the common synthesis techniques for perovskite solar cells and how the morphology and structural properties influence device performance.