{"title":"AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry.","authors":"Yuelan Zhang, Xinyi Zhang, Xue Yang, Linyue Lv, Qinyang Wang, Shaowei Zeng, Zhuyou Zhang, Martin Dorf, Shitao Li, Ling Zhao, Bishi Fu","doi":"10.1080/15548627.2024.2390814","DOIUrl":null,"url":null,"abstract":"<p><p>Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.<b>Abbreviation:</b> aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H<sup>+</sup> transporting V1 subunit A; ATP6V1H: ATPase H<sup>+</sup> transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: <i>drosophila melanogaster</i> endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: <i>homo sapiens</i> protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: <i>mus musculus</i> protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: S<i>accharomyces cerevisiae s288c</i> protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2390814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.Abbreviation: aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H+ transporting V1 subunit A; ATP6V1H: ATPase H+ transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: drosophila melanogaster endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: homo sapiens protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: mus musculus protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: Saccharomyces cerevisiae s288c protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.