Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten and Michael Boy
{"title":"Towards automated inclusion of autoxidation chemistry in models: from precursors to atmospheric implications†","authors":"Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten and Michael Boy","doi":"10.1039/D4EA00054D","DOIUrl":null,"url":null,"abstract":"<p >In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly empirical and may fail under real atmospheric conditions. In this work, a close-to-mechanistic approach allowing SOA quantification is presented, with a focus on a chain-like chemical reaction called “autoxidation”. A novel framework is employed to (a) describe the gas-phase chemistry, (b) predict the products' molecular structures and (c) explore the contribution of autoxidation chemistry on SOA formation under various conditions. As a proof of concept, the method is applied to benzene, an important anthropogenic SOA precursor. Our results suggest autoxidation to explain up to 100% of the benzene-SOA formed under low-NO<small><sub><em>x</em></sub></small> laboratory conditions. Under atmospheric-like day-time conditions, the calculated benzene-aerosol mass continuously forms, as expected based on prior work. Additionally, a prompt increase, driven by the NO<small><sub>3</sub></small> radical, is predicted by the model at dawn. This increase has not yet been explored experimentally and stresses the potential for atmospheric SOA formation <em>via</em> secondary oxidation of benzene by O<small><sub>3</sub></small> and NO<small><sub>3</sub></small>.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 8","pages":" 879-896"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00054d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly empirical and may fail under real atmospheric conditions. In this work, a close-to-mechanistic approach allowing SOA quantification is presented, with a focus on a chain-like chemical reaction called “autoxidation”. A novel framework is employed to (a) describe the gas-phase chemistry, (b) predict the products' molecular structures and (c) explore the contribution of autoxidation chemistry on SOA formation under various conditions. As a proof of concept, the method is applied to benzene, an important anthropogenic SOA precursor. Our results suggest autoxidation to explain up to 100% of the benzene-SOA formed under low-NOx laboratory conditions. Under atmospheric-like day-time conditions, the calculated benzene-aerosol mass continuously forms, as expected based on prior work. Additionally, a prompt increase, driven by the NO3 radical, is predicted by the model at dawn. This increase has not yet been explored experimentally and stresses the potential for atmospheric SOA formation via secondary oxidation of benzene by O3 and NO3.
在过去几十年中,大气中形成的二次有机气溶胶(SOA)因其对空气质量和气候的影响而日益受到关注。然而,预测其丰度的方法主要是经验性的,在实际大气条件下可能会失效。在这项工作中,提出了一种接近于机理的方法来量化 SOA,重点是一种称为 "自氧化 "的链式化学反应。该方法采用了一个新颖的框架:(a)描述气相化学反应;(b)预测产物的分子结构;(c)探索自氧化化学反应在各种条件下对 SOA 形成的影响。作为概念验证,该方法被应用于苯--一种重要的人为 SOA 前体。我们的研究结果表明,在低氮实验室条件下,自氧化作用可解释高达 100% 的苯 SOA 形成。在类似大气的日间条件下,计算出的苯-气溶胶质量会持续形成,这也是之前研究的预期结果。此外,根据模型预测,在黎明时分,由 NO3 自由基驱动的苯气溶胶会迅速增加。这种增加尚未经过实验探索,它强调了大气 SOA 通过 O3 和 NO3 对苯的二次氧化形成的可能性。