Alamandine, a protective component of the renin-angiotensin system, reduces cellular proliferation and interleukin-6 secretion in human macrophages through MasR–MrgDR heteromerization
Natalia L. Rukavina Mikusic , Mauro G. Silva , Fernando A. Erra Díaz , Angélica M. Pineda , Fátima Ferragut , Karina A. Gómez , Luciana Mazzitelli , Daniel H. Gonzalez Maglio , Myriam Nuñez , Robson A.S. Santos , Hernán E. Grecco , Mariela M. Gironacci
{"title":"Alamandine, a protective component of the renin-angiotensin system, reduces cellular proliferation and interleukin-6 secretion in human macrophages through MasR–MrgDR heteromerization","authors":"Natalia L. Rukavina Mikusic , Mauro G. Silva , Fernando A. Erra Díaz , Angélica M. Pineda , Fátima Ferragut , Karina A. Gómez , Luciana Mazzitelli , Daniel H. Gonzalez Maglio , Myriam Nuñez , Robson A.S. Santos , Hernán E. Grecco , Mariela M. Gironacci","doi":"10.1016/j.bcp.2024.116480","DOIUrl":null,"url":null,"abstract":"<div><p>Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1–7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1β were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR–MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1β secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1β was prevented by MasR blockade and MasR downregulation, suggesting MasR–MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1β secretion independently of MasR. MasR–MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR–MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1–7) reduced cellular proliferation in MasR −but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR–MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR–MrgDR interaction. MasR–MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224004635","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1–7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1β were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR–MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1β secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1β was prevented by MasR blockade and MasR downregulation, suggesting MasR–MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1β secretion independently of MasR. MasR–MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR–MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1–7) reduced cellular proliferation in MasR −but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR–MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR–MrgDR interaction. MasR–MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.