MolCompass: multi-tool for the navigation in chemical space and visual validation of QSAR/QSPR models

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sergey Sosnin
{"title":"MolCompass: multi-tool for the navigation in chemical space and visual validation of QSAR/QSPR models","authors":"Sergey Sosnin","doi":"10.1186/s13321-024-00888-z","DOIUrl":null,"url":null,"abstract":"<div><p>The exponential growth of data is challenging for humans because their ability to analyze data is limited. Especially in chemistry, there is a demand for tools that can visualize molecular datasets in a convenient graphical way. We propose a new, ready-to-use, multi-tool, and open-source framework for visualizing and navigating chemical space. This framework adheres to the low-code/no-code (LCNC) paradigm, providing a KNIME node, a web-based tool, and a Python package, making it accessible to a broad cheminformatics community. The core technique of the MolCompass framework employs a pre-trained parametric t-SNE model. We demonstrate how this framework can be adapted for the visualisation of chemical space and visual validation of binary classification QSAR/QSPR models, revealing their weaknesses and identifying model cliffs. All parts of the framework are publicly available on GitHub, providing accessibility to the broad scientific community. </p><p><b>Scientific contribution</b></p><p>We provide an open-source, ready-to-use set of tools for the visualization of chemical space. These tools can be insightful for chemists to analyze compound datasets and for the visual validation of QSAR/QSPR models.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00888-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00888-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of data is challenging for humans because their ability to analyze data is limited. Especially in chemistry, there is a demand for tools that can visualize molecular datasets in a convenient graphical way. We propose a new, ready-to-use, multi-tool, and open-source framework for visualizing and navigating chemical space. This framework adheres to the low-code/no-code (LCNC) paradigm, providing a KNIME node, a web-based tool, and a Python package, making it accessible to a broad cheminformatics community. The core technique of the MolCompass framework employs a pre-trained parametric t-SNE model. We demonstrate how this framework can be adapted for the visualisation of chemical space and visual validation of binary classification QSAR/QSPR models, revealing their weaknesses and identifying model cliffs. All parts of the framework are publicly available on GitHub, providing accessibility to the broad scientific community.

Scientific contribution

We provide an open-source, ready-to-use set of tools for the visualization of chemical space. These tools can be insightful for chemists to analyze compound datasets and for the visual validation of QSAR/QSPR models.

MolCompass:用于化学空间导航和 QSAR/QSPR 模型可视化验证的多功能工具。
由于人类分析数据的能力有限,数据的指数级增长对人类来说是一项挑战。特别是在化学领域,人们需要能以便捷的图形方式可视化分子数据集的工具。我们提出了一个新的、即用型、多工具和开源框架,用于可视化和导航化学空间。该框架采用低代码/无代码(LCNC)模式,提供一个 KNIME 节点、一个基于网络的工具和一个 Python 软件包,使广大化学信息学界都能使用。MolCompass 框架的核心技术采用了预先训练的参数 t-SNE 模型。我们展示了如何将这一框架用于化学空间的可视化和二元分类 QSAR/QSPR 模型的可视化验证,揭示其弱点并找出模型悬崖。该框架的所有部分均可在 GitHub 上公开获取,从而为广大科学界提供了可访问性。科学贡献我们为化学空间的可视化提供了一套开源、随时可用的工具。这些工具可以帮助化学家分析化合物数据集,并对 QSAR/QSPR 模型进行可视化验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信