{"title":"Predicting Intracranial Aneurysm Rupture: A Multifactor Analysis Combining Radscore, Morphology, and PHASES Parameters.","authors":"Zhaoxiang Zhang, Hui Li, Xiaoming Zhou, Yanjiu Zhong, Yue Zhang, Jinlong Deng, Shujuan Chen, Qikai Tang, Bingtao Zhang, Zixuan Yuan, Hui Ding, An Zhang, Qi Wu, Xin Zhang","doi":"10.1016/j.acra.2024.07.043","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.</p><p><strong>Materials and methods: </strong>We collected 440 patients with IAs in our hospital from 2015 to 2023, totaling 475 IAs (214 ruptured and 261 unruptured). A 7:3 random split was utilized to allocate participants into training and testing sets. To optimize the selection of radiomics features extracted from digital subtraction angiography, we employed t-tests and LASSO regression. Subsequently, we built single-factor and multifactor logistic regression (LR) models, alongside a nomogram. Furthermore, we employed four ML algorithms. After a comprehensive evaluation, including area under the curve (AUC), calibration curves, decision curve analysis (DCA), and other metrics, the best model was determined.</p><p><strong>Results: </strong>The AUCs for LR models P (PHASES), M (Morphology), and R (Radscore) in the testing set were 0.859, 0.755, and 0.803, respectively, while those for multifactor models R+M (Radscore and Morphology), R+P (Radscore and PHASES), and R+M+P (Radscore, Morphology, and PHASES) were 0.818, 0.899, and 0.887, respectively. The AUCs of random forest, extreme gradient boosting, gradient boosting machine, and light gradient boosting machine were 0.880, 0.888, 0.891, and 0.892 in testing set, respectively. In the training set, the LR model showed significant differences in AUCs compared with the four ML models (all p < 0.05). However, in the testing set, no statistically significant differences were found between them (all p > 0.05). Both ML models and the nomogram exhibit excellent performance in DCA and calibration curves.</p><p><strong>Conclusion: </strong>Nomogram and ML models based on Radscore, morphology, and PHASES show high precision in predicting aneurysm rupture.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":"359-372"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.07.043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.
Materials and methods: We collected 440 patients with IAs in our hospital from 2015 to 2023, totaling 475 IAs (214 ruptured and 261 unruptured). A 7:3 random split was utilized to allocate participants into training and testing sets. To optimize the selection of radiomics features extracted from digital subtraction angiography, we employed t-tests and LASSO regression. Subsequently, we built single-factor and multifactor logistic regression (LR) models, alongside a nomogram. Furthermore, we employed four ML algorithms. After a comprehensive evaluation, including area under the curve (AUC), calibration curves, decision curve analysis (DCA), and other metrics, the best model was determined.
Results: The AUCs for LR models P (PHASES), M (Morphology), and R (Radscore) in the testing set were 0.859, 0.755, and 0.803, respectively, while those for multifactor models R+M (Radscore and Morphology), R+P (Radscore and PHASES), and R+M+P (Radscore, Morphology, and PHASES) were 0.818, 0.899, and 0.887, respectively. The AUCs of random forest, extreme gradient boosting, gradient boosting machine, and light gradient boosting machine were 0.880, 0.888, 0.891, and 0.892 in testing set, respectively. In the training set, the LR model showed significant differences in AUCs compared with the four ML models (all p < 0.05). However, in the testing set, no statistically significant differences were found between them (all p > 0.05). Both ML models and the nomogram exhibit excellent performance in DCA and calibration curves.
Conclusion: Nomogram and ML models based on Radscore, morphology, and PHASES show high precision in predicting aneurysm rupture.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.