Leveraging feature selection for enhanced fall risk prediction in elderly using gait analysis.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sabri Altunkaya
{"title":"Leveraging feature selection for enhanced fall risk prediction in elderly using gait analysis.","authors":"Sabri Altunkaya","doi":"10.1007/s11517-024-03180-2","DOIUrl":null,"url":null,"abstract":"<p><p>There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors or activities to achieve higher accuracy. However, multiple sensors and activities reduce the availability of these systems. This study aims to develop a system to perform fall prediction for the elderly by using signals recorded from a single sensor during a short-term activity. A total of 168 features in the time and frequency domains were created using acceleration signals obtained from 71 elderly people. The features were weighted based on the ReliefF algorithm, and the artificial neural networks model was developed using the most important features. The best classification result was obtained using the 17 most important features of those weighted for K = 20 nearest neighbors. The highest accuracy was 82.2% (82.9% Sensitivity, 81.6% Specificity). The partially high accuracy obtained in our study shows that falling can be detected early with a sensor and a simple activity by determining the right features and can be easily applied in the assessment of the elderly during routine follow-ups.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3887-3897"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03180-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors or activities to achieve higher accuracy. However, multiple sensors and activities reduce the availability of these systems. This study aims to develop a system to perform fall prediction for the elderly by using signals recorded from a single sensor during a short-term activity. A total of 168 features in the time and frequency domains were created using acceleration signals obtained from 71 elderly people. The features were weighted based on the ReliefF algorithm, and the artificial neural networks model was developed using the most important features. The best classification result was obtained using the 17 most important features of those weighted for K = 20 nearest neighbors. The highest accuracy was 82.2% (82.9% Sensitivity, 81.6% Specificity). The partially high accuracy obtained in our study shows that falling can be detected early with a sensor and a simple activity by determining the right features and can be easily applied in the assessment of the elderly during routine follow-ups.

Abstract Image

利用步态分析特征选择增强老年人跌倒风险预测能力
目前还没有一种有效的老年人跌倒风险筛查工具可用于临床实践。开发一种可在初级保健服务中轻松使用的系统是当前的一项需求。目前的研究侧重于使用多个传感器或活动来实现更高的准确性。然而,多种传感器和活动降低了这些系统的可用性。本研究旨在开发一种系统,通过使用单个传感器在短期活动中记录的信号,对老年人进行跌倒预测。利用从 71 位老人身上获得的加速度信号,在时域和频域上创建了共 168 个特征。根据 ReliefF 算法对特征进行加权,并利用最重要的特征建立人工神经网络模型。使用 K = 20 近邻加权的 17 个最重要特征获得了最佳分类结果。最高准确率为 82.2%(灵敏度 82.9%,特异度 81.6%)。我们的研究获得的部分高准确率表明,通过确定正确的特征,使用传感器和简单的活动就能及早检测到跌倒,并可在日常随访中轻松应用于对老年人的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信