Rajkumar Boddu, Sivacharan Kollipara, Veena Kambam, Sohel Mohammed Khan, Soumyajit Behera, Nnvvss Narayana Murty, Nitin Baheti, Anup A Choudhury, Tausif Ahmed
{"title":"Novel omeprazole delayed release orally disintegrating tablets for enhanced patient compliance: a case of model informed formulation development.","authors":"Rajkumar Boddu, Sivacharan Kollipara, Veena Kambam, Sohel Mohammed Khan, Soumyajit Behera, Nnvvss Narayana Murty, Nitin Baheti, Anup A Choudhury, Tausif Ahmed","doi":"10.1080/00498254.2024.2391519","DOIUrl":null,"url":null,"abstract":"<p><p>The advanced <i>in silico</i> simulation tools, such as physiologically based biopharmaceutics models (PBBM) or physiologically based pharmacokinetic models (PBPK), play critical role in model informed formulation development. This approach has been successfully implemented in the present case for development of novel omeprazole delayed-release orally disintegrating tablets (ODT) formulation, aimed to enhance patient compliance.PBBM was developed using physicochemical, biopharmaceutical, and dissolution data. The dissolution studies for pilot formulations were conducted in biopredictive media in fasting (0.1 N HCl followed by pH 6.8) and fed (pH 5 followed by pH 6.8) conditions. The model was extensively validated in three stages: pilot fasted, pilot fed virtual bioequivalence and food effect assessments. Impressively, the model was able to predict both passed and failed batches appropriately.Based on insights from the pilot study, a higher scale pivotal formulation was optimised. Prospective predictions were made for pivotal formulations using validated model and bio results were found to be in line with model predictions in fasting condition.Overall, a rationale and patient compliant formulation was developed using innovative modelling approach and filed to regulatory agency. The novel omeprazole formulation enhanced patient compliance through ease of administration thereby circumventing challenges of conventional formulation.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"629-641"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2391519","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The advanced in silico simulation tools, such as physiologically based biopharmaceutics models (PBBM) or physiologically based pharmacokinetic models (PBPK), play critical role in model informed formulation development. This approach has been successfully implemented in the present case for development of novel omeprazole delayed-release orally disintegrating tablets (ODT) formulation, aimed to enhance patient compliance.PBBM was developed using physicochemical, biopharmaceutical, and dissolution data. The dissolution studies for pilot formulations were conducted in biopredictive media in fasting (0.1 N HCl followed by pH 6.8) and fed (pH 5 followed by pH 6.8) conditions. The model was extensively validated in three stages: pilot fasted, pilot fed virtual bioequivalence and food effect assessments. Impressively, the model was able to predict both passed and failed batches appropriately.Based on insights from the pilot study, a higher scale pivotal formulation was optimised. Prospective predictions were made for pivotal formulations using validated model and bio results were found to be in line with model predictions in fasting condition.Overall, a rationale and patient compliant formulation was developed using innovative modelling approach and filed to regulatory agency. The novel omeprazole formulation enhanced patient compliance through ease of administration thereby circumventing challenges of conventional formulation.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology