Plastic particle impacts on the cardiovascular system and angiogenesis potential.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-03-01 Epub Date: 2024-08-10 DOI:10.1007/s11010-024-05081-2
Banafsheh Yalameha, Aysa Rezabakhsh, Reza Rahbarghazi, Fatemeh Khaki-Khatibi, Alireza Nourazarian
{"title":"Plastic particle impacts on the cardiovascular system and angiogenesis potential.","authors":"Banafsheh Yalameha, Aysa Rezabakhsh, Reza Rahbarghazi, Fatemeh Khaki-Khatibi, Alireza Nourazarian","doi":"10.1007/s11010-024-05081-2","DOIUrl":null,"url":null,"abstract":"<p><p>The extensive application of plastics in different sectors such as packaging, building, textiles, consumer products, and several industries has increased in recent years. Emerging data have confirmed that plastic wastes and segregates are problematic issues in aquatic and terrestrial ecosystems. The decomposition of plastic particles (PPs) leads to the release of microplastics (MPs) and nanoplastics (NPs) into the surrounding environment and entry of these particles will be problematic in unicellular and multicellular creatures. It was suggested that PPs can easily cross all biological barriers and reach different organs, especially the cardiovascular system, with the potential to modulate several molecular pathways. It is postulated that the direct interaction of PPs with cellular and subcellular components induces genotoxicity and cytotoxicity within the cardiovascular system. Meanwhile, being inert carriers, PPs can intensify the toxicity of other contaminants inside the cardiovascular system. Here, in this review article, several underlying mechanisms related to PP toxicity in the cardiovascular system were discussed in detail.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"1327-1342"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05081-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive application of plastics in different sectors such as packaging, building, textiles, consumer products, and several industries has increased in recent years. Emerging data have confirmed that plastic wastes and segregates are problematic issues in aquatic and terrestrial ecosystems. The decomposition of plastic particles (PPs) leads to the release of microplastics (MPs) and nanoplastics (NPs) into the surrounding environment and entry of these particles will be problematic in unicellular and multicellular creatures. It was suggested that PPs can easily cross all biological barriers and reach different organs, especially the cardiovascular system, with the potential to modulate several molecular pathways. It is postulated that the direct interaction of PPs with cellular and subcellular components induces genotoxicity and cytotoxicity within the cardiovascular system. Meanwhile, being inert carriers, PPs can intensify the toxicity of other contaminants inside the cardiovascular system. Here, in this review article, several underlying mechanisms related to PP toxicity in the cardiovascular system were discussed in detail.

Abstract Image

塑料微粒对心血管系统和血管生成潜力的影响。
近年来,塑料在包装、建筑、纺织品、消费品和多个行业的广泛应用日益增多。新出现的数据证实,塑料废物和塑料分离物是水生和陆地生态系统中的棘手问题。塑料微粒(PPs)的分解会导致微塑料(MPs)和纳米塑料(NPs)释放到周围环境中,这些微粒的进入会对单细胞和多细胞生物造成问题。有研究表明,PPs 可以轻易穿过所有生物屏障,到达不同器官,尤其是心血管系统,并有可能调节多种分子通路。据推测,聚丙烯与细胞和亚细胞成分的直接相互作用会诱发心血管系统的基因毒性和细胞毒性。同时,作为惰性载体,聚丙烯可增强心血管系统内其他污染物的毒性。在这篇综述文章中,详细讨论了与聚丙烯在心血管系统中的毒性有关的几种潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信