IIFS2.0: An Improved Incremental Feature Selection Method for Protein Sequence Processing Based on a Caching Strategy.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chaolu Meng, Yue Pei, Yongbo Bu, Qing Liu, Qun Li, Quan Zou, Ying Zhang
{"title":"IIFS2.0: An Improved Incremental Feature Selection Method for Protein Sequence Processing Based on a Caching Strategy.","authors":"Chaolu Meng, Yue Pei, Yongbo Bu, Qing Liu, Qun Li, Quan Zou, Ying Zhang","doi":"10.1016/j.jmb.2024.168741","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of feature selection in protein sequence recognition problems is to select the optimal feature set and use it as training input for classifiers and discover key sequence features of specific proteins. In the feature selection process, relevant features associated with the target task will be retained, and irrelevant and redundant features will be removed. Therefore, in an ideal state, a feature combination with smaller feature dimensions and higher performance indicators is desired. This paper proposes an algorithm called IIFS2.0 based on the cache elimination strategy, which takes the local optimal combination of cached feature subsets as a breakthrough point. It searches for a new feature combination method through the cache elimination strategy to avoid the drawbacks of human factors and excessive reliance on feature sorting results. We validated and analyzed its effectiveness on the protein dataset, demonstrating that IIFS2.0 significantly reduces the dimensionality of feature combinations while also improving various evaluation indicators. In addition, we provide IIFS2.0 on https://112.124.26.17:8006/ for researchers to use.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168741","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of feature selection in protein sequence recognition problems is to select the optimal feature set and use it as training input for classifiers and discover key sequence features of specific proteins. In the feature selection process, relevant features associated with the target task will be retained, and irrelevant and redundant features will be removed. Therefore, in an ideal state, a feature combination with smaller feature dimensions and higher performance indicators is desired. This paper proposes an algorithm called IIFS2.0 based on the cache elimination strategy, which takes the local optimal combination of cached feature subsets as a breakthrough point. It searches for a new feature combination method through the cache elimination strategy to avoid the drawbacks of human factors and excessive reliance on feature sorting results. We validated and analyzed its effectiveness on the protein dataset, demonstrating that IIFS2.0 significantly reduces the dimensionality of feature combinations while also improving various evaluation indicators. In addition, we provide IIFS2.0 on https://112.124.26.17:8006/ for researchers to use.

IIFS2.0:基于缓存策略的蛋白质序列处理增量特征选择改进方法
蛋白质序列识别问题中特征选择的目的是选择最佳特征集,并将其作为分类器的训练输入,发现特定蛋白质的关键序列特征。在特征选择过程中,与目标任务相关的特征将被保留,不相关的冗余特征将被去除。因此,在理想状态下,我们需要一个特征维度较小、性能指标较高的特征组合。本文提出了一种基于缓存消除策略的算法 IIFS2.0,它以缓存特征子集的局部最优组合为突破点。该算法以缓存特征子集的局部最优组合为突破点,通过缓存消除策略寻找新的特征组合方法,避免了人为因素和过度依赖特征排序结果的弊端。我们在蛋白质数据集上对其有效性进行了验证和分析,结果表明 IIFS2.0 显著降低了特征组合的维度,同时还改善了各项评价指标。此外,我们还在 http://112.124.26.17:8006/ 上提供了 IIFS2.0 供研究人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信