Philippe Gantzer, Ruben Staub, Yu Harabuchi, Satoshi Maeda, Alexandre Varnek
{"title":"Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst.","authors":"Philippe Gantzer, Ruben Staub, Yu Harabuchi, Satoshi Maeda, Alexandre Varnek","doi":"10.1002/minf.202400063","DOIUrl":null,"url":null,"abstract":"<p><p>Visualization and analysis of large chemical reaction networks become rather challenging when conventional graph-based approaches are used. As an alternative, we propose to use the chemical cartography (\"chemography\") approach, describing the data distribution on a 2-dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm - an advanced chemography approach - has been applied to visualize the reaction path network of a simplified Wilkinson's catalyst-catalyzed hydrogenation containing some 10<sup>5</sup> structures generated with the help of the Artificial Force Induced Reaction (AFIR) method using either Density Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. Using new atoms permutation invariant 3D descriptors for structure encoding, we've demonstrated that GTM possesses the abilities to cluster structures that share the same 2D representation, to visualize potential energy surface, to provide an insight on the reaction path exploration as a function of time and to compare reaction path networks obtained with different methods of energy assessment.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Visualization and analysis of large chemical reaction networks become rather challenging when conventional graph-based approaches are used. As an alternative, we propose to use the chemical cartography ("chemography") approach, describing the data distribution on a 2-dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm - an advanced chemography approach - has been applied to visualize the reaction path network of a simplified Wilkinson's catalyst-catalyzed hydrogenation containing some 105 structures generated with the help of the Artificial Force Induced Reaction (AFIR) method using either Density Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. Using new atoms permutation invariant 3D descriptors for structure encoding, we've demonstrated that GTM possesses the abilities to cluster structures that share the same 2D representation, to visualize potential energy surface, to provide an insight on the reaction path exploration as a function of time and to compare reaction path networks obtained with different methods of energy assessment.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.