{"title":"Aldosterone, mitochondria and regulation of cardiovascular metabolic disease.","authors":"Cheng-Hsuan Tsai, Zheng-Wei Chen, Bo-Ching Lee, Che-Wei Liao, Yi-Yao Chang, Yan-Rou Tsai, Chia-Hung Chou, Vin-Cent Wu, Chi-Sheng Hung, Yen-Hung Lin","doi":"10.1530/JOE-23-0350","DOIUrl":null,"url":null,"abstract":"<p><p>Aldosterone is a mineralocorticoid hormone involved in controlling electrolyte balance, blood pressure, and cellular signaling. It plays a pivotal role in cardiovascular and metabolic physiology. Excess aldosterone activates mineralocorticoid receptors, leading to subsequent inflammatory responses, increased oxidative stress, and tissue remodeling. Various mechanisms have been reported to link aldosterone with cardiovascular and metabolic diseases. However, mitochondria, responsible for energy generation through oxidative phosphorylation, have received less attention regarding their potential role in aldosterone-related pathogenesis. Excess aldosterone leads to mitochondrial dysfunction, and this may play a role in the development of cardiovascular and metabolic diseases. Aldosterone has the potential to affect mitochondrial structure, function, and dynamic processes, such as mitochondrial fusion and fission. In addition, aldosterone has been associated with the suppression of mitochondrial DNA, mitochondria-specific proteins, and ATP production in the myocardium through mineralocorticoid receptor, nicotinamide adenine dinucleotide phosphate oxidase, and reactive oxygen species pathways. In this review, we explore the mechanisms underlying aldosterone-induced cardiovascular and metabolic mitochondrial dysfunction, including mineralocorticoid receptor activation and subsequent inflammatory responses, as well as increased oxidative stress. Furthermore, we review potential therapeutic targets aimed at restoring mitochondrial function in the context of aldosterone-associated pathologies. Understanding these mechanisms is vital, as it offers insights into novel therapeutic strategies to mitigate the impact of aldosterone-induced mitochondrial dysfunction, thereby potentially improving the outcomes of individuals affected by cardiovascular and metabolic disorders.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-23-0350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aldosterone is a mineralocorticoid hormone involved in controlling electrolyte balance, blood pressure, and cellular signaling. It plays a pivotal role in cardiovascular and metabolic physiology. Excess aldosterone activates mineralocorticoid receptors, leading to subsequent inflammatory responses, increased oxidative stress, and tissue remodeling. Various mechanisms have been reported to link aldosterone with cardiovascular and metabolic diseases. However, mitochondria, responsible for energy generation through oxidative phosphorylation, have received less attention regarding their potential role in aldosterone-related pathogenesis. Excess aldosterone leads to mitochondrial dysfunction, and this may play a role in the development of cardiovascular and metabolic diseases. Aldosterone has the potential to affect mitochondrial structure, function, and dynamic processes, such as mitochondrial fusion and fission. In addition, aldosterone has been associated with the suppression of mitochondrial DNA, mitochondria-specific proteins, and ATP production in the myocardium through mineralocorticoid receptor, nicotinamide adenine dinucleotide phosphate oxidase, and reactive oxygen species pathways. In this review, we explore the mechanisms underlying aldosterone-induced cardiovascular and metabolic mitochondrial dysfunction, including mineralocorticoid receptor activation and subsequent inflammatory responses, as well as increased oxidative stress. Furthermore, we review potential therapeutic targets aimed at restoring mitochondrial function in the context of aldosterone-associated pathologies. Understanding these mechanisms is vital, as it offers insights into novel therapeutic strategies to mitigate the impact of aldosterone-induced mitochondrial dysfunction, thereby potentially improving the outcomes of individuals affected by cardiovascular and metabolic disorders.
醛固酮是一种矿物皮质激素,参与控制电解质平衡、血压和细胞信号传导。它在心血管和新陈代谢生理过程中发挥着关键作用。过量的醛固酮会激活矿皮质激素受体,导致炎症反应、氧化应激增加和组织重塑。据报道,醛固酮与心血管和新陈代谢疾病之间存在多种关联机制。然而,负责通过氧化磷酸化产生能量的线粒体在醛固酮相关发病机制中的潜在作用却较少受到关注。过量的醛固酮会导致线粒体功能障碍,这可能在心血管疾病和代谢性疾病的发病过程中发挥作用。醛固酮有可能影响线粒体的结构、功能和动态过程,如线粒体融合和分裂。此外,醛固酮还通过矿质皮质激素受体、烟酰胺腺嘌呤二核苷酸磷酸氧化酶和活性氧途径抑制线粒体 DNA、线粒体特异性蛋白和心肌中 ATP 的产生。在这篇综述中,我们探讨了醛固酮诱导心血管和代谢线粒体功能障碍的机制,包括矿质皮质激素受体激活和随后的炎症反应,以及氧化应激增加。此外,我们还回顾了旨在恢复醛固酮相关病症中线粒体功能的潜在治疗靶点。了解这些机制至关重要,因为它为新型治疗策略提供了见解,以减轻醛固酮诱导的线粒体功能障碍的影响,从而有可能改善心血管和代谢紊乱患者的预后。
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.